GOODWE

Instrukcja obsługi

Podłączony do sieci falownik fotowoltaiczny

Seria SDT G2 4-25 kW

Wersja 1.4-2023-07-10

Copyright ©GoodWe Technologies Co., Ltd., 2023. Wszelkie prawa zastrzeżone

Żadna część tej instrukcji nie może być powielana ani przesyłana na platformę publiczną w jakiejkolwiek formie lub w jakikolwiek sposób bez uprzedniej pisemnej zgody firmy GoodWe Technologies Co., Ltd.

Znaki towarowe

GOODIME i inne znaki towarowe GOODWE są znakami towarowymi firmy GoodWe Technologies Co., Ltd. Wszystkie inne znaki towarowe lub zastrzeżone znaki towarowe wymienione w tej instrukcji są własnością firmy GoodWe Technologies Co., Ltd.

Uwaga

Informacje zawarte w niniejszej instrukcji obsługi mogą ulec zmianie ze względu na aktualizacje produktu lub z innych powodów. Ten przewodnik nie może zastąpić etykiet produktu ani środków ostrożności zawartych w instrukcji obsługi, chyba że określono inaczej. Wszystkie opisy zamieszczone w tej instrukcji mają charakter wyłącznie orientacyjny.

SPIS TREŚCI

1	O tej instrukcji	1
	1.1 Modele, których dotyczy instrukcja	1
	1.2 Docelowi odbiorcy	2
	1.3 Definicje symboli	2
	1.4 Aktualizacje	2
2	Środki ostrożności	3
	2.1 Ogólne zasady bezpieczeństwa	3
	2.2 Strona DC	4
	2.3 Strona AC	4
	2.4 Instalacja falownika	5
	2.5 Wymagania dotyczące pracowników	5
2	Onis produktu	6
5	2 1. Sconariusza zastosować	0
	3.1 Scenariusze zastosowan	6
	3.2 Rouzaje obsługiwanych sieci	0 ح
	3.4 Wygrąu	/
	3.4.1 CZĘSCI	
	3.4.3 Wskaźniki	
	3.4.4 Tabliczka znamionowa	14
4	Kontrola i przechowywanie	15
	4.1 Kontrola przed odbiorem	15
	4.2 Zakres dostawy	15
	4.3 Przechowywanie	16
5	Instalacia	17
	5.1 Wymagania dotyczące instalacji	17
	5.2 Instalacja falownika	19
	5.2.1 Przenoszenie falownika	19
	5.2.2 Instalowanie falownika	19

6	 Połączenia elektryczne 6.1 Środki ostrożności 6.2 Podłączanie przewodu PE 	24 24 24
	6.3 Podłączanie przewodu wejściowego układu fotowoltaicznego	25
	6.4 Podłączanie przewodu wyjściowego prądu przemiennego	31
	6.5 Komunikacja	35
	6.5.1 Podłączanie przewodu komunikacyjnego (opcja)	35
	6.5.3 Instalacja modułu komunikacyjnego (opcjonalnie)	40
7	Przekazanie urzadzenia do eksploatacij	41
	7.1 Sprawdzenie elementów przed właczeniem zasilania	41
	7.2 Włączenie zasilania	41
8	Przekazanie systemu do eksploatacij	42
•	8.1 Wskaźniki i przycisk	42
	8.2 Ustawianie parametrów falownika za pomocą wyświetlacza LCD	44
	8.2.1 Menu wyświetlacza LCD – wprowadzenie	44
	8.2.2 Parametry falownika – wprowadzenie	46
	8.3 Ustawianie parametrów falownika za pomocą aplikacji	48
	8.4 Monitorowanie przez platformę SEMS Portal	48
9	Konserwacja	49
	9.1 Wyłączanie zasilania falownika	49
	9.2 Demontaż falownika	49
	9.3 Utylizacja falownika	49
	9.4 Kozwiązywanie problemow	49
	y.y kulynowa konserwacja	53
10	Parametry techniczne	54

1 O tej instrukcji

W niniejszej instrukcji opisano informacje o produkcie, instalację, podłączenie elektryczne, przekazanie do eksploatacji, rozwiązywanie problemów i konserwację. Przed przystąpieniem do instalacji i rozpoczęciem użytkowania urządzenia należy się zapoznać z niniejszą instrukcją. Wszyscy instalatorzy i użytkownicy muszą być zaznajomieni z cechami produktu, jego funkcjami i środkami ostrożności. Niniejsza instrukcja może być aktualizowana bez uprzedzenia. Więcej informacji o produkcie i najnowsze dokumenty można znaleźć na stronie <u>https://en.goodwe.com/</u>.

1.1 Modele, których dotyczy instrukcja

Niniejsza instrukcja obsługi dotyczy niżej wymienionych falowników (w skrócie SDT G2):

Model	Znamionowa moc wyjściowa	Znamionowe napięcie wyjściowe
GW4K-DT	4 KW	230/400, 3L/N/PE
GW4000-SDT-20	4 KW	400, 3L/N/PE
GW5K-DT	5KW	230/400, 3L/N/PE
GW5000-SDT-20	5KW	400, 3L/N/PE
GW6K-DT	6KW	230/400, 3L/N/PE
GW6000-SDT-20	6KW	400, 3L/N/PE
GW8K-DT	8KW	
GW10KT-DT	10KW	
GW12KT-DT	12KW	
GW15KT-DT	15KW	
GW17KT-DT	17KW	
GW20KT-DT	20KW	
GW25KT-DT	25KW	400, 3L/N/PE
GW8KAU-DT	8KW	
GW9.9KAU-DT	9.9KW	
GW10KAU-DT	10KW	
GW15KAU-DT	15KW	
GW20KAU-DT	20KW	
GW8000-SDT-20	8KW	
GW10K-SDT-20	10KW	3/N/PE, 220/380, 230/400, 240/415
GW12K-SDT-20	12KW	
GW12KLV-SDT-20	12KW	220/127, 3L/N/PE
GW15K-SDT-20	15KW	
GW17K-SDT-20	17KW	3/N/PE, 220/380, 230/400, 240/415
GW20K-SDT-20	20KW	

1.2 Docelowi odbiorcy

Niniejsza instrukcja jest przeznaczona dla przeszkolonych i posiadających odpowiednią wiedzę specjalistów technicznych. Personel techniczny musi być zaznajomiony z produktem, lokalnymi standardami i systemami elektrycznymi.

1.3 Definicje symboli

Poszczególne poziomy komunikatów ostrzegawczych w niniejszej instrukcji są definiowane w następujący sposób:

▲ NIEBEZPIECZEŃSTWO

Wskazuje na zagrożenie wysokiego poziomu, które, jeśli nie zostanie wyeliminowane, może spowodować śmierć lub poważne obrażenia ciała.

\Lambda OSTRZEŻENIE

Wskazuje na zagrożenie średniego poziomu, które, jeśli nie zostanie wyeliminowane, może spowodować śmierć lub poważne obrażenia ciała.

\Lambda PRZESTROGA

Wskazuje na zagrożenie niskiego poziomu, które, jeśli nie zostanie wyeliminowane, może spowodować lekkie lub umiarkowane obrażenia ciała.

UWAGA

Wyróżnienie i uzupełnienie tekstów albo niektórych umiejętności i metod rozwiązywania problemów związanych z produktem w celu zaoszczędzenia czasu.

1.4 Aktualizacje

Najnowszy dokument zawiera wszystkie aktualizacje wprowadzone we wcześniejszych wydaniach.

Wersja 1.0 2022-03-15

- Wydanie pierwsze
- Wersja 1.1 2022-08-15
- Aktualizacja 8.2.1 Menu wyświetlacza LCD wprowadzenie.

Wersja 1.2 2023-02-10

• Aktualizacja 10 Parametry techniczne.

Wersja 1.3 2023-03-20

• Dodano nowy model: GW9.9KAU-DT

Wersja 1.4 2023-07-10

- Aktualizacja 3.4.2 Wymiary.
- Aktualizacja 4.2 Zakres dostawy.
- Aktualizacja 5.2.2 Instalowanie falownika.

2 Środki ostrożności

Uwaga

Falowniki zostały zaprojektowane i przetestowane zgodnie z obowiązującymi zasadami bezpieczeństwa. Przed przystąpieniem do wykonywania jakichkolwiek czynności należy przeczytać wszystkie instrukcje i ostrzeżenia dotyczące bezpieczeństwa oraz stosować się do nich. Niewłaściwa obsługa może spowodować obrażenia ciała lub szkody materialne, ponieważ falowniki są urządzeniami elektrycznymi.

2.1 Ogólne zasady bezpieczeństwa

Uwaga

- Informacje zawarte w niniejszym dokumencie mogą ulec zmianie ze względu na aktualizacje produktu lub z innych powodów. Ta instrukcja obsługi nie może zastąpić etykiet produktu, chyba że wskazano inaczej. Wszystkie zamieszczone tu opisy mają charakter wyłącznie orientacyjny.
- Przed instalacją należy przeczytać instrukcję obsługi, aby zapoznać się z produktem i środkami ostrożności.
- Wszystkie instalacje powinny być wykonywane przez przeszkolonych i kompetentnych techników, którzy znają miejscowe normy i przepisy bezpieczeństwa.
- Podczas pracy z urządzeniem należy używać narzędzi izolacyjnych i stosować środki ochrony indywidualnej, aby zapewnić sobie bezpieczeństwo. Podczas dotykania urządzeń elektronicznych należy nosić rękawice i ubrania antystatyczne oraz paski na nadgarstki, aby chronić falownik przed uszkodzeniem.
- Ściśle przestrzegać instrukcji instalacji, obsługi i konfiguracji zawartych w niniejszym dokumencie. Producent nie ponosi odpowiedzialności za uszkodzenia urządzeń ani za wypadki na osobach będące skutkiem zlekceważenia instrukcji. Szczegółowe informacje o gwarancji można znaleźć na stronie internetowej: <u>https://en.goodwe.com/warranty.asp</u>.

2.2 Strona DC

\Lambda NIEBEZPIECZEŃSTWO

Podłączyć przewody prądu stałego za pomocą dostarczonych złączy i zacisków prądu stałego. Producent nie ponosi odpowiedzialności za uszkodzenia sprzętu w przypadku zastosowania innych złączy lub zacisków.

\Lambda OSTRZEŻENIE

- Upewnić się, że ramy podzespołów i system wsporników są pewnie uziemione.
- Upewnić się, że przewody prądu stałego są podłączone solidnie i bezpiecznie.
- Zmierzyć przewód prądu stałego za pomocą multimetru, aby uniknąć połączenia o odwrotnej biegunowości. Ponadto napięcie powinno się mieścić w dopuszczalnym zakresie.
- Moduły fotowoltaiczne stosowane z falownikiem muszą posiadać klasę A wg IEC61730.
- Jeśli po stronie wejściowej znajdują się więcej niż 3 stringi fotowoltaiczne, zaleca się instalację dodatkowego bezpiecznika.
- Po wystawieniu na działanie promieni słonecznych panel fotowoltaiczny będzie generować bardzo wysokie napięcie, które może spowodować zagrożenie porażeniem prądem elektrycznym. Należy bezwzględnie przestrzegać podanych przez nas instrukcji.

2.3 Strona AC

▲ OSTRZEŻENIE

- Napięcie i częstotliwość w punkcie przyłączenia powinny spełniać wymagania sieciowe.
- Po stronie prądu przemiennego zaleca się zastosowanie dodatkowego urządzenia zabezpieczającego, takiego jak wyłącznik automatyczny lub bezpiecznik. Wartość znamionowa urządzenia zabezpieczającego powinna być co najmniej 1,25-krotnie większa od wartości wyjściowego prądu przemiennego.
- Zaleca się stosowanie przewodów miedzianych jako przewodów wyjściowego prądu przemiennego. Jeśli użytkownik chce zastosować inne przewody, powinien się skontaktować z producentem urządzenia.

2.4 Instalacja falownika

\Lambda NIEBEZPIECZEŃSTWO

- Zaciski na spodzie falownika nie mogą wytrzymać dużego obciążenia. Może to doprowadzić do uszkodzenia zacisków.
- Wszystkie etykiety i znaki ostrzegawcze powinny być wyraźnie widoczne po zakończeniu instalacji. Nie wolno zasłaniać, zmieniać ani niszczyć etykiet.
- Nie przeprowadzono testów łączenia wielu falowników AS/NZS 4777.2:2020.
- Na falowniku znajdują się następujące etykiety ostrzegawcze.

4	najpierw wyłączyć falownik przed rozpoczęciem pracy. Przed przystąpieniem do jakichkolwiek prac należy	<u>!</u>	przystąpieniem do wykonywania jakichkolwiek czynności należy założyć odpowiednie środki ochrony indywidualnej. Opóźnione rozładowanie. Po wyłączeniu zasilania pależy
	zapoznać się z treścią przewodnika.	A C Smin	zaczekać, aż podzespoły zostaną całkowicie rozładowane.
	Zagrożenie związane z wysoką temperaturą. Nie należy dotykać urządzenia, aby spowodować powstanie poparzenia.	×	Nie wolno wyrzucać produktu jako odpadu z gospodarstwa domowego. Należy usunąć produkt zgodnie z lokalnymi przepisami lub odesłać go do producenta.
CE	Znak CE.		Punkt uziemienia. Wskazuje miejsce podłączenia przewodu PE.
	Znak RCM.	nd.	nd.

2.5 Wymagania dotyczące pracowników

UWAGA

- Pracownicy, którzy instalują lub konserwują sprzęt, muszą być dokładnie przeszkoleni oraz znać środki ostrożności i prawidłowe działania.
- Tylko wykwalifikowani specjaliści lub przeszkoleni pracownicy mogą instalować, obsługiwać, konserwować i wymieniać sprzęt lub jego części.

3 Opis produktu

3.1 Scenariusze zastosowań

Falownik SDT G2 jest trójfazowym, podłączanym do sieci falownikiem do stringów fotowoltaicznych. Falownik przekształca prąd stały wytwarzany przez moduł fotowoltaiczny w prąd przemienny i przekazuje go do sieci elektrycznej. Falownik jest przeznaczony do następujących zastosowań:

3.2 Rodzaje obsługiwanych sieci

Falownik

W przypadku sieci z przewodem zerowym napięcie między N a uziemieniem musi być mniejsze niż 10 V.

3.4 Wygląd

3.4.1 Części

GW4K-DT, GW4000-SDT-20, GW5K-DT, GW5000-SDT-20, GW6K-DT, GW6000-SDT-20

GW8K-DT, GW10KT-DT

- 1. Wskaźnik diodowy
- 4. Zacisk przewodu PE
- Wyłącznik prądu stałego
- 10. Port COM RS485 lub inteligentnego licznika
- 13. Wentylator

- 2. Wyświetlacz LCD (opcja)
- 5. Płyta montażowa
- 8. Zawór wentylacyjny
- 11. Port COM DRED lub zdalne wyłączanie

- 3. Przycisk (opcja)
 - Zacisk wejściowy układu
- 6. fotowoltaicznego
- 9. Port Bluetooth, zestawu Wi-Fi/LAN, Wi-Fi, 4G lub GPRS
- 12. Port wyjściowy AC

GW8KAU-DT, GW9.9KAU-DT, GW10KAU-DT, GW15KAU-DT, GW20KAU-DT, GW17KT-DT, GW20KT-DT, GW25KT-DT

10 11 12

13

9

15 GW12K-SDT-20, GW12KLV-SDT-20,

GW15K-SDT-20, GW17K-SDT-20,

8

·@•@

GW20K-SDT-20

14

GW8000-SDT-20, GW10K-SDT-20

- Wskaźnik diodowy 1.
- 4. Zacisk przewodu PE
- Port USB (tylko dla 7. Brazylii)
- Port COM DRED lub 10. zdalne wyłączanie
- Port wyjściowy AC 13.

- Wyświetlacz LCD (opcja) 2.
- 5. Płyta montażowa
- Zacisk wejściowy układu 8. fotowoltaicznego (PV1)^[1] Port Bluetooth, zestawu
- 11. Wi-Fi/LAN, Wi-Fi, 4G lub GPRS
- 14. Zawór wentylacyjny

- Przycisk (opcja) 3.
- Wyłącznik prądu stałego 6.
- Zacisk wejściowy układu 9. fotowoltaicznego (PV2)
- Port COM RS485 lub 12. inteligentnego licznika
- Wentylator^[2] 15.

[1]: GW25KT-DT: 3 x PV+/PV-; inne modele: 2 x PV+/PV-

[2]: Bez wentylatora: GW8KAU-DT, GW10KAU-DT

Nazwa	Opis
Zacisk wejściowy układu fotowoltaicznego	Służy do podłączania przewodów wejściowych prądu stałego modułu fotowoltaicznego.
Wyłącznik prądu stałego	Włączenie lub wyłączenie wejścia DC
Port USB	Zarezerwowany Port USB służy do aktualizacji i konfiguracji systemu.
Zawór wentylacyjny	-
Port komunikacyjny	Służy do podłączania modułów komunikacyjnych typu Bluetooth, Wi-Fi, GPRS, 4G itp.
Inteligentny licznik + RS485	Służy do podłączenia inteligentnego licznika lub przewodu komunikacyjnego RS485.
DRED (6Pin) / Zdalne wyłączanie (2Pin)	Służy do podłączenia przewodu komunikacyjnego systemu DRED lub zdalnego wyłączania. DRED dla Australii i Nowej Zelandii, zdalne wyłączenie tylko dla Europy.
Złącze wyjścia AC	Służy do podłączenia przewodu wyjściowego AC. Podłącz falownik i sieć elektryczną.
Wentylatory	Służy do chłodzenia falownika. Bez wentylatora: GW8KAU-DT, GW10KAU-DT.
Wskaźnik diodowy	Wskazuje stan roboczy falownika
Wyświetlacz LCD	Opcja. Służy do sprawdzania parametrów falownika.
Przycisk	Opcja. Służy do sterowania treścią wyświetlaną na ekranie.
Punkt uziemienia	Służy do podłączenia przewodu PE.
Płyta montażowa	Służy do instalacji falownika.

3.4.2 Wymiary

Wymiary GW4K-DT, GW4000-SDT-20, GW5K-DT, GW5000-SDT-20, GW6K-DT, GW6000-SDT-20, GW10KT-DT:

Wymiary GW8KAU-DT, GW9.9KAU-DT, GW10KAU-DT, GW15KAU-DT, GW20KAU-DT, GW17KT-DT, GW20KT-DT, GW25KT-DT, GW25KT-DT, GW8000-SDT-20, GW10K-SDT-20:

Wymiary GW12K-SDT-20, GW12KLV-SDT-20, GW15K-SDT-20, GW17K-SDT-20, GW20K-SDT-20:

3.4.3 Wskaźniki

Jako interfejs pomiędzy człowiekiem i komputerem, panel wyświetlacza LCD składa się ze wskaźników diodowych, przycisków i wyświetlacza LCD na przednim panelu falownika. Dioda LED sygnalizuje stan pracy falownika. Do konfiguracji i przeglądania parametrów służą przyciski i wyświetlacz LCD.

Falowniki projektowane z wyświetlaczem diodowym

Wskaźnik Status		Opis
		WŁ. = SIEĆ WI-FI JEST PODŁĄCZONA/AKTYWNA
		MIGA 1 = SYSTEM SIECI WI-FI JEST RESETOWANY
	MIGA 2 = NIE PODŁĄCZONO DO RO	MIGA 2 = NIE PODŁĄCZONO DO ROUTERA
		MIGA 4 = PROBLEM Z SERWEREM SIECI WI-FI
		MIGA = PORT RS485 JEST PODŁĄCZONY
		WYŁ. = SIEĆ WI-FI NIE JEST AKTYWNA
		WŁ. = FALOWNIK DOPROWADZA ZASILANIE
		WYŁ. = FALOWNIK NIE DOSTARCZA W TEJ CHWILI PRĄDU
		WŁ. = WYSTĄPIŁ BŁĄD
		WYŁ. = BRAK BŁĘDU

Falowniki projektowane bez wyświetlacza diodowego

Wskaźnik	Status	Opis		
		WŁ. = ZASILANIE URZĄDZENIA WŁĄCZONE		
		WYŁ. = ZASILANIE URZĄDZENIA WYŁĄCZONE		
		WŁ. = FALOWNIK DOPROWADZA ZASILANIE		
		WYŁ. = FALOWNIK NIE DOPROWADZA ZASILANIA		
		JEDNO POWOLNE MIGNIĘCIE = AUTODIAGNOSTYKA PRZED PODŁĄCZENIEM DO SIECI		
		JEDNO MIGNIĘCIE = PODŁĄCZANIE DO SIECI		
		WŁ. = WIFI JEST PODŁĄCZONE/AKTYWNE		
		MIGA 1 = SYSTEM KOMUNIKACJI BEZPRZEWODOWEJ JEST RESETOWANY		
\bigcirc	<u>и и</u>	MIGA 2 = PROBLEM Z ROUTEREM SIECI BEZPRZEWODOWEJ		
		MIGA 4 = PROBLEM Z SERWEREM SIECI BEZPRZEWODOWEJ		
		MIGA = PORT RS485 JEST PODŁĄCZONY		
		WYŁ. = SIEĆ BEZPRZEWODOWA JEST NIEAKTYWNA		
		WŁ. = WYSTĄPIŁ BŁĄD		
		WYŁ. = BRAK BŁĘDU		

3.4.4 Tabliczka znamionowa

Tabliczka znamionowa służy wyłącznie do celów orientacyjnych.

				Znak tow	varowy Goodwe, typ produktu
	Produ Model Vmax P	Int: Grid-Tied PV Inverter		i model p	produktu
Max. PV current: **/**Ad.c. isc PV: **.*/**.*Ad.c. Rated grid voltage:3/N/PE- ***/****/***Va.c. AC-grid frequency: **/**Hz Max current: **.* A a.c. Rated active power: *kW Rated/Max apparent power; **/**kV A Inverter topology: Non-isolated Power factor range: Default >*.**,**cap*.*ind Operating temperature range: -****C Overvoltage-category: DC II :AC III IP degree: IP65		Parametry techniczne			
	Protective class: Class I		Symbole bezpieczeństwa i znaki certyfika Dane kontaktowe i numer seryjny		bezpieczeństwa i znaki certyfikacji ntaktowe i numer seryjny
4	2	Zagrożenie związane z wysokim napięciem. Nale wyłączyć falownik przed rozpoczęciem pracy.	eży	<u>^</u>	Występują potencjalne zagrożenia. Przed przystąpieniem do wykonywania jakichkolwiek czynności należy założyć odpowiednie środki ochrony indywidualnej.
IJ	ì	Przed wykonaniem jakichkolwiek operacji należy zapoznać się z instrukcją obsługi.		A Cismin	Opóźnione rozładowanie. Po wyłączeniu zasilania należy zaczekać, aż podzespoły zostaną rozładowane.

	instrukcją obsługi.	rozładowane.
<u></u>	Zagrożenie związane z wysoką temperaturą. Nie należy dotykać urządzenia, aby spowodować powstania urazu.	Nie wolno wyrzucać produktu jako odpadu z gospodarstwa domowego. Należy usunąć produkt zgodnie z lokalnymi przepisami lub odesłać go do producenta.
CE	Znak CE.	Znak RCM.

4 Kontrola i przechowywanie

4.1 Kontrola przed odbiorem

Przed odebraniem produktu należy sprawdzić następujące elementy:

- Sprawdzić zewnętrzne opakowanie pod kątem uszkodzeń, takich jak dziury, pęknięcia, odkształcenia i inne oznaki mogące świadczyć o uszkodzeniu urządzenia. Nie rozpakowywać urządzenia i w przypadku stwierdzenia jakichkolwiek uszkodzeń jak najszybciej skontaktować się z dostawcą.
- 2. Sprawdzić model falownika. Jeśli model falownika nie jest zgodny z zamówieniem, nie rozpakowywać produktu i skontaktować się z dostawcą.
- Należy sprawdzić, czy model dostarczonych produktów jest poprawny, czy są one kompletne i czy nie zostały uszkodzone. W przypadku stwierdzenia jakichkolwiek uszkodzeń należy się jak najszybciej skontaktować z dostawcą.

4.2 Zakres dostawy

UWAGA

- Liczba śrub do mocowania rozszerzeń, wkrętów, złączek fotowoltaicznych, zaciskiu OT kabla AC i końcówek kablowych różni się w zależności od typu falownika. Faktyczne akcesoria mogą być inne.
- Typy modułów komunikacji zawierające Wi-Fi, 4G, LAN, GPRS, Bluetooth itd. To, jaki moduł zostanie dostarczony, zależy od metody komunikacji wybranego falownika.
- Model złącza AC i wspornika montażowego różnią się w zależności od różnych falowników. Faktyczne akcesoria mogą być inne.
- Tylko modele GW15KAU-DT i GW20KAU-DT są wyposażone w skrzynkę fotowoltaiczną i wspornik skrzynki fotowoltaicznej.

4.3 Przechowywanie

Jeśli urządzenie nie ma być zainstalowane lub używane natychmiast, należy się upewnić, że środowisko przechowywania spełnia następujące wymagania:

- 1. Nie otwierać opakowania zewnętrznego ani nie wyrzucać środka osuszającego.
- 2. Urządzenie przechowywać w czystym miejscu. Temperatura i wilgotność muszą być odpowiednie i nie może dochodzić do kondensacji pary wodnej.
- 3. Wysokość i kierunek układania falowników w stos powinny być zgodne z instrukcjami podanymi na opakowaniu.
- 4. Falowniki należy układać w stosy z zachowaniem ostrożności, aby nie dopuścić do ich upadku.
- 5. Jeśli falownik był długo przechowywany, przed oddaniem go do użytku powinien zostać sprawdzony przez specjalistów.

5 Instalacja

5.1 Wymagania dotyczące instalacji

Wymagania dotyczące środowiska instalacji

- 1. Nie instalować urządzenia w pobliżu materiałów łatwopalnych, wybuchowych ani żrących.
- 2. Zainstalować urządzenie na powierzchni, która jest wystarczająco solidna, aby utrzymać falownik.
- Urządzenie należy zainstalować w dobrze wentylowanym miejscu, aby zapewnić dobre rozpraszanie ciepła. Ponadto przestrzeń instalacyjna powinna być wystarczająco duża, aby można było w niej wykonywać różne czynności.
- 4. Urządzenia o wysokim stopniu ochrony mogą być instalowane w pomieszczeniach lub na zewnątrz. Temperatura i wilgotność powietrza w miejscu instalacji powinny się mieścić w odpowiednim zakresie.
- 5. Urządzenie zainstalować w miejscu osłoniętym, aby uniknąć bezpośredniego działania promieni słonecznych, deszczu i śniegu. W razie potrzeby należy zamontować osłonę przeciwsłoneczną.
- Nie instalować urządzenia w miejscach łatwo dostępnych, zwłaszcza w zasięgu dzieci. Podczas pracy urządzenia występuje wysoka temperatura. Nie dotykać powierzchni, aby uniknąć poparzenia.
- 7. Zainstalować urządzenie na wysokości, która jest dogodna do obsługi i konserwacji, podłączeń elektrycznych oraz sprawdzania wskaźników i etykiet.
- 8. Należy zainstalować urządzenie z dala od zakłóceń elektromagnetycznych.

Wymagania dotyczące podpór montażowych

- 1. Podpora montażowa powinna być niepalna i ognioodporna.
- 2. Powierzchnia wsporcza musi być wystarczająco solidna, aby utrzymać produkt.
- Nie instalować urządzenia na podporze o słabej izolacji akustycznej, aby uniknąć hałasu generowanego przez pracujące urządzenie, który może być uciążliwy dla okolicznych mieszkańców.

Wymagania dotyczące kąta instalacji

- Zainstalować falownik w pozycji pionowej lub przy maksymalnym odchyleniu do tyłu wynoszącym 15 stopni.
- Nie wolno instalować falownika do góry nogami, przechylonego do przodu, odwrotnie przechylonego do tyłu ani poziomo.

Wymagania dotyczące narzędzi instalacyjnych

Podczas instalacji urządzenia zalecane jest użycie następujących narzędzi. W razie potrzeby należy użyć innych narzędzi pomocniczych.

5.2 Instalacja falownika

5.2.1 Przenoszenie falownika

\Lambda PRZESTROGA

Przed instalacją należy przenieść falownik na miejsce. Aby uniknąć obrażeń ciała lub uszkodzenia urządzenia, należy postępować zgodnie z poniższymi instrukcjami.

- 1. Przed przeniesieniem urządzenia należy wziąć pod uwagę jego masę. Do przemieszczania urządzenia należy wyznaczyć odpowiednią liczbę osób, aby uniknąć obrażeń ciała.
- 2. Aby uniknąć obrażeń ciała, należy nosić rękawice ochronne.
- 3. Należy utrzymywać równowagę podczas przenoszenia sprzętu.

5.2.2 Instalowanie falownika

UWAGA

- Podczas wiercenia otworów omijać rury wodociągowe i przewody w ścianie.
- Podczas wiercenia otworów nosić okulary i maskę przeciwpyłową, aby zapobiec wdychaniu pyłu lub kontaktowi pyłu z oczami.
- Właściwie zwymiarowaną blokadę chroniącą przed kradzieżą przygotowuje klient. Średnica otworu blokady powinna wynosić 10 mm.
- Podczas instalowania skrzynki fotowoltaicznej należy upewnić się, że wszystkie zaciski wejściowe prądu stałego znajdują się wewnątrz skrzynki fotowoltaicznej. Zamontuj skrzynkę i przymocuj ją do spodu falownika.

Krok 1 Umieścić płytę montażową na ścianie w pozycji wypoziomowanej i zaznaczyć miejsca wiercenia otworów.

Krok 2 Wywiercić otwory na głębokość 80 mm za pomocą wiertarki udarowej. Średnica wiertła powinna wynosić 13 mm.

- Krok 3 Przymocować płytę montażową z użyciem śrub rozporowych.
- Krok 4 (tylko Australia) Zainstalować blokadę wyłącznika prądu stałego.
- Krok 5 Zainstalować falownik na płycie montażowej.
- Krok 6 Dokręcić nakrętki mocujące płytę montażową i falownik.
- Krok 7 Zamontować blokadę antykradzieżową.

UWAGA

Sposób montażu falownika GW4K-DT, GW4000-SDT-20, GW5K-DT, GW5000-SDT-20, GW6K-DT, GW6000-SDT-20, GW10KT-DT, GW12KT-DT, GW15KT-DT:

UWAGA

Sposób montażu falownika GW8KAU-DT, GW9.9KAU-DT, GW10KAU-DT, GW15KAU-DT, GW20KAU-DT, GW17KT-DT, GW20KT-DT, GW25KT-DT, GW8000-SDT-20, GW10K-SDT-20, GW12K-SDT-20, GW12K-SDT-20, GW15K-SDT-20, GW17K-SDT-20, GW20K-SDT-20:

Krok 1 Umieścić płytę montażową na ścianie w pozycji wypoziomowanej i zaznaczyć miejsca wiercenia otworów.

Krok 2 Wywiercić otwory na głębokość 80 mm za pomocą wiertarki udarowej. Średnica wiertła powinna wynosić 8 mm.

Krok 3 Przymocować płytę montażową z użyciem śrub rozporowych.

Krok 4 Zainstalować falownik na płycie montażowej.

Krok 5 (tylko Australia) Zainstalować blokadę wyłącznika prądu stałego.

Krok 6 Dokręcić nakrętki mocujące płytę montażową i falownik.

Krok 7 Zamontować blokadę antykradzieżową.

Krok 8 (Dla Australii i Nowej Zelandii) Zamontować razem skrzynkę fotowoltaiczną i płytę montażową skrzynki fotowoltaicznej za pomocą dostarczonych śrub M5.

Krok 9 (Dla Australii i Nowej Zelandii) Wywiercić otwory na głębokość 60 mm za pomocą wiertarki udarowej. Średnica wiertła powinna wynosić 8 mm.

Krok 10 (Dla Australii i Nowej Zelandii) Zamocować skrzynkę fotowoltaiczną na spodzie falownika za pomocą dostarczonych śrub rozporowych.

Тур-2

UWAGA

Australia i Nowa Zelandia: GW15KAU-DT, GW20KAU-DT.

6 Połączenia elektryczne

6.1 Środki ostrożności

🚹 NIEBEZPIECZEŃSTWO

- Przed wykonaniem jakichkolwiek połączeń elektrycznych należy odłączyć wyłącznik prądu stałego oraz wyłącznik wyjścia prądu przemiennego falownika, aby wyłączyć zasilanie urządzenia. Nie pracować przy włączonym zasilaniu. W przeciwnym razie może dojść do porażenia prądem.
- Wykonać połączenia elektryczne zgodnie z lokalnymi przepisami i regulacjami. Dotyczy to czynności, przewodów i specyfikacji podzespołów.
- Jeśli napięcie jest zbyt wysokie, może to oznaczać, że przewód jest nieprawidłowo podłączony. Przed podłączeniem przewodu do portu przewodu falownika należy zarezerwować pewną jego długość.

UWAGA

- Podczas wykonywania połączeń elektrycznych nosić środki ochrony indywidualnej, takie jak obuwie ochronne, rękawice ochronne i rękawice izolacyjne.
- Wszystkie połączenia elektryczne powinny być wykonywane przez wykwalifikowanych specjalistów.
- Kolory przewodów podane w tym dokumencie mają charakter wyłącznie poglądowy. Specyfikacje przewodów powinny być zgodne z lokalnymi przepisami i regulacjami.

6.2 Podłączanie przewodu PE

▲ OSTRZEŻENIE

- Przewód PE podłączony do obudowy falownika nie może zastąpić przewodu PE podłączonego do portu wyjścia AC. Oba przewody PE muszą być solidnie podłączone.
- W przypadku kilku falowników wszystkie punkty uziemienia na obudowach muszą być połączone ekwipotencjalnie.
- Aby zwiększyć odporność zacisku na korozję, zaleca się nałożenie żelu krzemionkowego lub farby na zacisk uziemiający po zainstalowaniu przewodu PE.
- Przewód PE powinien zostać przygotowany przez klienta. Zalecane specyfikacje:
 - Typ: jednożyłowy przewód miedziany do zastosowań zewnętrznych
 - Pole przekroju przewodu S≥10 mm² (GW8000-SDT-20, GW10K-SDT-20, GW12K-SDT-20, GW12KLV-SDT-20, GW15K-SDT-20, GW17K-SDT-20, GW20K-SDT-20).
 - Pole przekroju przewodu S \ge 4 mm² (Inne modele).

6.3 Podłączanie przewodu wejściowego układu fotowoltaicznego

NIEBEZPIECZEŃSTWO

Przed podłączeniem stringu fotowoltaicznego do falownika należy potwierdzić następujące informacje. W przeciwnym razie może dojść do trwałego uszkodzenia falownika, a nawet do pożaru, obrażeń ciała i strat materialnych.

- 1. Upewnić się, że maksymalny prąd zwarciowy i maksymalne napięcie wejściowe na MPPT mieszczą się w dopuszczalnym zakresie.
- 2. Biegun dodatni stringu fotowoltaicznego podłączyć do PV+ falownika. Biegun ujemny stringu fotowoltaicznego podłączyć do PV– falownika.
- 3. Minimalna impedancja do uziemienia modułu fotowoltaicznego powinna przekraczać R. R=Maks. napięcie wejściowe (V)/30mA, tj. R=1100V/30 mA=36,7 K Ω lub R=1000 V/30 mA=33,4 K Ω).

<u> OSTRZEŻENIE</u>

- Podłączyć przewody prądu stałego za pomocą dostarczonych złączy układu fotowoltaicznego.
 Producent nie ponosi odpowiedzialności za uszkodzenia w przypadku zastosowania innych złączy.
- Stringów fotowoltaicznych nie można uziemiać. Przed podłączeniem stringu fotowoltaicznego do falownika należy się upewnić, że minimalna rezystancja izolacji stringu fotowoltaicznego od uziemienia spełnia wymagania dotyczące minimalnej rezystancji izolacji.
- Przewód wejściowy prądu stałego powinien zostać przygotowany przez klienta. Zalecane specyfikacje:
 - Typ: przewód fotowoltaiczny do zastosowań zewnętrznych, który odpowiada maksymalnemu napięciu wejściowemu.
 - Powierzchnia przekroju poprzecznego przewodu: 2,5~4 mm²

UWAGA

Jeśli zaciski wejścia fotowoltaicznego nie będą używane, należy je zakryć wodoszczelnymi osłonami. W przeciwnym razie wpłynie to na stopień ochrony.

Podłączanie przewodu wejściowego prądu stałego (ze skrzynką fotowoltaiczną)

UWAGA

Należy zamontować skrzynkę fotowoltaiczną, gdy GW15KAU-DT lub GW20KAU-DT jest używany w Australii i Nowej Zelandii. Zamontuj pokrywę skrzynki fotowoltaicznej po podłączeniu kabla wejściowego prądu stałego do urządzenia.

- Krok 1 Poprowadź kable prądu stałego do skrzynki fotowoltaicznej.
- Krok 1 Przygotować przewody prądu stałego.
- Krok 2 Zacisnąć styki zaciskane.
- Krok 3 Zdemontować złącza fotowoltaiczne.
- Krok 4 Podłączyć przewód prądu stałego i sprawdzić napięcie na wejściu prądu stałego.
- Krok 6 Podłączyć złącza układu fotowoltaicznego do zacisków układu fotowoltaicznego.
- Krok 7 Zamontuj pokrywę skrzynki fotowoltaicznej.

Złącze prądu stałego Vaconn

Złącze prądu stałego Staubli MC4

Podłączanie przewodu wejściowego prądu stałego (bez skrzynki fotowoltaicznej)

Krok 1 Przygotować przewody prądu stałego.

Krok 2 Zacisnąć styki zaciskane.

Krok 3 Zdemontować złącza fotowoltaiczne.

Krok 4 Podłączyć przewód prądu stałego i sprawdzić napięcie na wejściu prądu stałego.

Krok 5 Podłączyć złącza układu fotowoltaicznego do zacisków układu fotowoltaicznego.

Złącze prądu stałego Vaconn

Złącze prądu stałego Staubli MC4

6.4 Podłączanie przewodu wyjściowego prądu przemiennego

\Lambda OSTRZEŻENIE

- Nie podłączać obciążeń między falownikiem a wyłącznikiem prądu przemiennego bezpośrednio do niego podłączonym.
- Jeżeli oprócz wbudowanego RCMU (jednostki monitorującej prąd szczątkowy) wymagane jest zewnętrzne urządzenie RCD (wyłącznik różnicowoprądowy), należy zastosować wyłącznik różnicowoprądowy typu A, aby uniknąć wyzwolenia. Prąd działania wyłącznika RCD powinien wynosić 300 mA lub więcej.

Po stronie prądu przemiennego zainstalować wyłącznik automatyczny prądu przemiennego, aby zapewnić bezpieczne odłączenie sieci przez falownik w przypadku wystąpienia wyjątkowej sytuacji. Wybrać odpowiedni wyłącznik automatyczny prądu przemiennego zgodnie z lokalnymi przepisami. Zalecane wyłączniki automatyczne prądu przemiennego:

Model falownika	Wyłącznik automatyczny prądu przemiennego
GW4K-DT, GW4000-SDT-20, GW5K-DT, GW5000-SDT-20, GW6K-DT, GW6000-SDT-20	16 A
GW8K-DT, GW8KAU-DT, GW10KT-DT, GW9.9KAU-DT, GW10KAU-DT, GW8000-SDT-20, GW10K-SDT-20,	25 A
GW12KT-DT, GW15KT-DT, GW15KAU-DT, GW17KT-DT, GW12K-SDT-20, GW12KLV-SDT-20, GW15K-SDT-20	32 A
GW20KT-DT, GW20KAU-DT, GW17K-SDT-20, GW20K-SDT-20	40 A
GW25KT-DT	50 A

UWAGA

Dla każdego falownika zainstalować jeden wyłącznik automatyczny prądu przemiennego. Kilka falowników nie może współdzielić jednego wyłącznika automatycznego prądu przemiennego.

Rodzaj kabla	Pięciożyłowy kabel do zastosowań na zewnątrz
Średnica zewnętrzna	4-10 kW: 13 mm≤Φ≤18 mm 12-15 kW: 18 mm≤Φ≤25 mm
Powierzchnia przekroju poprzecznego przewodu	4-10 kW: 4 mm²≤S≤10 mm² 12-15 kW: 6 mm²≤S≤16 mm²

▲ OSTRZEŻENIE

- Zwrócić uwagę na oznakowania L1, L2, L3, N, PE na zacisku prądu przemiennego. Podłączyć przewody prądu przemiennego do odpowiednich zacisków. W przypadku niewłaściwego podłączenia przewodów może dojść do uszkodzenia falownika.
- Upewnić się, że całe żyły przewodu są włożone w otwory zacisków prądu przemiennego. Żadna część żyły przewodu nie może być odsłonięta.
- Upewnić się, że przewody są dobrze podłączone. W przeciwnym razie zacisk może być zbyt gorący i uszkodzić falownik podczas pracy.
- Zarezerwować określoną długość przewodu PE. Upewnić się, że przewód PE jest ostatnim przewodem, który wytrzymuje naprężenia, gdy przewód wyjściowy prądu przemiennego jest napięty.

UWAGA

GW4K-DT, GW4000-SDT-20, GW5K-DT, GW5000-SDT-20, GW6K-DT, GW6000-SDT-20, GW10KT-DT, GW12KT-DT, GW15KT-DT

UWAGA

Dla modeli: GW8000-SDT-20, GW10K-SDT-20, GW12K-SDT-20, GW12KLV-SDT-20, GW15K-SDT-20, GW17K-SDT-20, GW20K-SDT-20.

UWAGA

- Upewnić się, że przewody są prawidłowo i solidnie podłączone. Usunąć wszystkie zanieczyszczenia z komory konserwacyjnej.
- Uszczelnić zacisk wyjścia prądu przemiennego, aby zapewnić odpowiedni stopień ochrony.

UWAGA

Dla modeli: GW8KAU-DT, GW9.9KAU-DT, GW10KAU-DT, GW15KAU-DT, GW20KAU-DT, GW17KT-DT, GW20KT-DT, GW25KT-DT.

UWAGA

- Upewnić się, że przewody są prawidłowo i solidnie podłączone. Usunąć wszystkie zanieczyszczenia z komory konserwacyjnej.
- Uszczelnić zacisk wyjścia prądu przemiennego, aby zapewnić odpowiedni stopień ochrony.

6.5 Komunikacja

6.5.1 Podłączanie przewodu komunikacyjnego (opcja)

UWAGA

Upewnić się, że urządzenie komunikacyjne jest podłączone do portu COM. Przewód komunikacyjny należy poprowadzić z dala od wszelkich źródeł zakłóceń i przewodów zasilających, aby zapobiec wpływowi na sygnał.

Rodzaj komunikacji	comunikacji Definicja portu Opis funkcji		
RS485	1: RS485 B 2: RS485 B 3: RS485 A 4: RS485 A	Służy do podłączenia falownika do innych falowników lub portu RS485 na rejestratorze danych.	
Komunikacja z licznikiem	5: Licznik + 6: Licznik -	Funkcja zabezpieczenia przed prądem zwrotny jest realizowana przez podłączenie licznika oraz CT. W razie potrzeby skontaktować się z producentem w celu zakupu urządzeń.	
DRED	1: DRM1/5 2: DRM2/6 3: DRM3/7 4: DRM4/8 5: REFGen 6: Com/DRM0	Ten falownik spełnia wymagania dotyczące planowania sieci DRED w Australii i Nowej Zelandii. Funkcje portów DRM 1-4 są zarezerwowane. Urządzenia dla DRM zostaną przygotowane przez klientów. Jeśli chcesz używać terminala DRED, skontaktuj się z działem obsługi posprzedażnej, aby uzyskać terminal DRED. Funkcja DRED jest domyślnie wyłączona. W razie potrzeby włącz tę funkcję za pomocą aplikacji SolarGo.	
Zdalne wyłączenie	+:DRM4/8 -: REFGen	Port zdalnego wyłączania jest zarezerwowany zgodnie z przepisami dotyczącymi sieci elektrycznych w Europie. Powiązane urządzeni powinny być przygotowane przez klientów. Funkcja zdalnego wyłączenia jest domyślnie wyłączona. W razie potrzeby włącz tę funkcję za pomocą aplikacji SolarGo.	

6.5.2 Opis DRM

Schemat połączeń DRM

Falownik obsługuje tryby DRM0 i DRM 5-8. Poniżej znajdują się wymagania:

Mode	Port falownika	Wymóg	Uwaga
DRM0	COM/DRM0	Włącz S0, a falownik wyłączy się. Wyłączyć S0, a falownik powróci do pracy w sieci.	-
DRM5	DRM1/5	Włączyć S5, a falownik nie wyprowadza mocy czynnej.	Gdy jednocześnie działają co najmniej dwa moduły DRM,
DRM6	DRM2/6	Włączyć S6, a falownik wyprowadza moc czynną nie większą niż 50% swojej mocy znamionowej.	wybrać dowolne dwa z nich, które spełniają najsurowsze wymagania.
DRM7	DRM3/7	Włączyć S7, a falownik wyprowadza moc czynną nie większą niż 75% swojej mocy znamionowej. W międzyczasie falownik zużywa maksymalną moc bierną.	
DRM8	DRM4/8	Włączyć S8, a falownik powróci do wyjścia Mocy aktywnej.	

Przykład ograniczenia mocy odprowadzanej do sieci (pojedynczy falownik)

Przykład ograniczenia mocy odprowadzanej do sieci (kilka falowników)

Podłączanie kabla komunikacyjnego (RS485, miernik i DRED)

UWAGA

Podłączyć kabel RS485, kabel miernika i kabel DRED za pomocą terminala komunikacyjnego 6PIN w następujący sposób.

RS485/miernik	DRED	
1: RS485 B	1: DRM1/5	
2: RS485 B	2: DRM2/6	
3: RS485 A	3: DRM3/7	
4: RS485 A	4: DRM4/8	
5: Licznik +	5: REFGen	
6: Licznik -	6: Com/DRM0	

UWAGA

Australia i Nowa Zelandia:

Nie usuwać fabrycznie zainstalowanego terminala, jeśli funkcja DRED nie jest zastosowana. Zamontować terminal z powrotem do falownika, gdy funkcja DRED nie będzie w danym momencie używana. Falownika nie można podłączyć do sieci, jeśli zacisk DRED jest usunięty.

Podłączanie kabla komunikacyjnego (RS485, miernik i zdalne wyłączanie)

UWAGA

Podłączyć przewód zdalnego wyłączania za pomocą 2-wtykowego złącza komunikacyjnego w następujący sposób.

Podłączanie przewodu komunikacyjnego (USB)

Port USB: Dotyczy tylko Brazylii.

6.5.3 Instalacja modułu komunikacyjnego (opcjonalnie)

Podłączyć moduł komunikacyjny do falownika, aby nawiązać połączenie między falownikiem a smartfonem lub stroną internetową. Moduł komunikacyjny może być modułem Bluetooth, Wi-Fi, LAN, GPRS lub 4G. Ustawić parametry falownika, sprawdzić informacje o pracy i usterkach oraz obserwować stan systemu w czasie za pomocą smartfona lub stron internetowych.

UWAGA

- Więcej informacji na temat modułu można znaleźć w instrukcji obsługi dostarczonego modułu komunikacyjnego. Szczegółowe informacje można znaleźć na stronie <u>https://en.goodwe.com/</u>.
- Wyjąć moduł komunikacyjny za pomocą narzędzia odblokowującego. Producent nie ponosi odpowiedzialności za uszkodzenie portu w przypadku wyjęcia modułu bez użycia narzędzia odblokowującego.

7 Przekazanie urządzenia do eksploatacji

7.1 Sprawdzenie elementów przed włączeniem zasilania

Lp.	Przedmiot kontroli
1	Falownik zamontowano solidnie w czystym, dobrze wentylowanym i ułatwiającym obsługę miejscu.
2	Przewód PE, przewód wejściowy prądu stałego, przewód wyjściowy prądu przemiennego i przewody komunikacyjne są prawidłowo i solidnie podłączone.
3	Opaski kablowe są poprowadzone prawidłowo i równomiernie, bez zadziorów.
4	Nieużywane złącza i zaciski są zabezpieczone.
5	Napięcie i częstotliwość w punkcie przyłączenia spełniają wymagania sieciowe.

7.2 Włączenie zasilania

Krok 1 Włączyć wyłącznik prądu przemiennego między falownikiem a siecią elektryczną.

Krok 2 (opcja) Włączyć wyłącznik prądu stałego między falownikiem a stringiem fotowoltaicznym.

Krok 3 Włączyć wyłącznik prądu stałego między falownikiem a stringiem fotowoltaicznym.

8 Przekazanie systemu do eksploatacji

8.1 Wskaźniki i przycisk

Falowniki projektowane z wyświetlaczem diodowym

Typ Status			Opis	
U Zasilanie		Stałe żółte	Stan komunikacji jest normalny.	
		Pojedyncze miganie na żółto	Komunikacja resetuje się lub uruchamia ponownie.	
		Podwójne miganie na żółto	Falownik nie jest podłączony do routera.	
		Czterokrotne miganie na żółto	Falownik nie jest podłączony do serwera.	
		Miga na żółto	RS485 działa normalnie.	
		Wył.	Brak komunikacji.	
		Świeci światłem stałym na zielono	Falownik połączył się pomyślnie z siecią.	
Praca		Wył.	Falownik jest odłączony od sieci.	
Alarmowanie		Świeci światłem stałym na czerwono	Błąd systemu.	
		Wył.	Brak błędu.	

Falowniki projektowane bez wyświetlacza diodowego

Typ Status		Opis	
Ċ		Świeci światłem stałym na zielono	Włączenie zasilania.
Zasilanie		Wył.	Wyłączenie zasilania.
		Świeci światłem stałym na zielono	Sieć energetyczna działa prawidłowo. Falownik jest podłączony do sieci.
		Wył.	Falownik jest odłączony od sieci.
Praca		Pojedyncze zielone, powolne miganie	Autotest przed podłączeniem do sieci.
	шшш	Pojedyncze zielone szybkie miganie	Falownik zostanie podłączony do sieci.
		Świeci światłem stałym na zielono	Moduł komunikacyjny działa prawidłowo.
		Poczwórne miganie na zielono	Falownik nie jest podłączony do serwera.
		Podwójne miganie na zielono	Falownik nie jest podłączony do routera.
SEIVIS		Pojedyncze zielone, powolne miganie	RS485 działa normalnie.
	шшш	Pojedyncze zielone szybkie miganie	Komunikacja resetuje się lub uruchamia ponownie.
		Wył.	Brak komunikacji.
		Świeci światłem stałym na czerwono	Błąd systemu.
Alarmowanie		Wył.	Brak błędu.

Opis przycisków wyświetlacza LCD

Jeśli na dowolnej stronie przestaniesz naciskać przycisk przez pewien czas, wyświetlacz LCD zrobi się ciemny i powróci do strony początkowej, co oznacza, że parametr na tej stronie został zapisany pomyślnie.

8.2 Ustawianie parametrów falownika za pomocą wyświetlacza LCD

UWAGA

- Wersja oprogramowania falownika przedstawionego w niniejszym dokumencie to V1.00.00.13. Zrzuty ekranu służą wyłącznie do celów orientacyjnych. Faktyczny wygląd wyświetlacza może się różnić.
- Nazwa, zakres i wartość domyślna parametrów mogą ulec zmianie lub korekcie. Decydujące znaczenie ma faktyczny wyświetlacz.
- Parametry zasilania powinni ustawić profesjonaliści, aby nie dopuścić do niekorzystnego wpływu niewłaściwych parametrów na moc wytwórczą.

8.2.1 Menu wyświetlacza LCD – wprowadzenie

W tej części opisano strukturę menu, która umożliwia wygodniejsze przeglądanie informacji o falowniku i ustawianie parametrów.

Następna strona

8.2.2 Parametry falownika – wprowadzenie

Parametry	Opis
Normal	Strona główna. Wskazuje moc falownika w czasie rzeczywistym. Nacisnąć i przytrzymać przez 2 s, aby sprawdzić bieżący kod bezpieczeństwa.
E-Today	Sprawdzenie mocy generowanej przez system w danym dniu.
E-Total	Sprawdzenie mocy całkowitej generowanej przez system.
Vpv	Napięcie wejściowe DC falownika.
Ipv	Natężenie wejściowe DC falownika.
Vac	Napięcie sieci elektrycznej.
Iac	Prąd wyjściowy AC falownika.
Fac	Częstotliwość sieci elektrycznej.
Error History	Historyczne zapisy komunikatów o błędach falownika.

Parametry	Opis		
Model	Wskazuje konkretny model falownika. Nacisnąć i przytrzymać przez 2 s, aby ustawić kod bezpieczeństwa. Ustawić kraj zabezpieczeń zgodnie z lokalnymi standardami sieci i scenariuszem zastosowania falownika.		
Ver	Sprawdzenie wersji oprogramowania.		
Set Language	Ustawienie języka. Języki: angielski, portugalski, hiszpański.		
Set Time	Należy ustawić czas zgodny z rzeczywistym czasem w kraju/regionie, w którym znajduje się falownik.		
RSSI	Wskazuje siłę sygnału odbieranego przez moduły GPRS i 4G.		
W/L Reset	Wyłączenie i ponowne włączenie modułu WiFi.		
W/L Reload	Przywrócenie ustawień fabrycznych modułu WiFi. Po przywróceniu ustawień fabrycznych należy ponownie skonfigurować parametry sieciowe modułu WiFi.		
PF Adjust	Ustawienie współczynnika mocy falownika stosownie do rzeczywistej sytuacji.		
Time Interval	Ustawianie interwału czasowego stosownie do rzeczywistych potrzeb.		
Shadow MPPT	Jeśli panele fotowoltaiczne są zacienione, można włączyć funkcję skanowania cienia.		
Power Limit	Soft limit : Ustawienie doprowadzania energii do sieci elektrycznej zgodnie z lokalnymi wymaganiami i standardami. Hard limit : Falownik i sieć elektryczna zostaną automatycznie odłączone, gdy moc wprowadzana do sieci przekroczy wymagany limit.		
Set Power Limit Ustawienie mocy oddawanej do sieci elektrycznej zgodnie z rzeczyv sytuacją.			
Set Modbus Addr Ustawienie rzeczywistego adresu Modbus.			
LVRT	Przy włączonej funkcji LVRT falownik pozostanie połączony z siecią energetyczną gdy wystąpi krótkotrwały wyjątek niskiego napięcia w sieci elektrycznej.		
HVRT	Przy włączonej funkcji HVRT falownik pozostanie połączony z siecią energetyczną gdy wystąpi krótkotrwały wyjątek wysokiego napięcia w sieci elektrycznej.		
Grid Type Ustawienie rodzaju sieci zgodnie z rzeczywistym rodzajem sieci. Obsługiwany rodzaj sieci: sieć gwiaździsta i sieć delta.			
Set ARC	Funkcja ARC jest opcjonalna i domyślnie wyłączona. Odpowiednio włączanie lub wyłączanie funkcji ARC.		
Fault Clear	Usuwanie rejestru alarmów dotyczących ARC.		
Self Check	Sprawdzić, czy ARC może działać normalnie.		
USB Mode Select	Zarezerwowane do rozwiązywania problemów przez personel serwisu posprzedażnego.		

8.3 Ustawianie parametrów falownika za pomocą aplikacji

SolarGo to aplikacja służąca do komunikacji z falownikiem poprzez moduł Bluetooth, moduł Wi-Fi lub moduł GPRS. Często używane funkcje:

- 1. Sprawdzanie danych operacyjnych, wersji oprogramowania, alarmów falownika itp.
- 2. Ustawianie parametrów sieci i parametrów komunikacji falownika.
- 3. Konserwacja urządzenia.

Więcej informacji można znaleźć w instrukcji obsługi aplikacji SolarGo. Aby pobrać instrukcję obsługi, należy zeskanować kod QR lub odwiedzić stronę: <u>https://en.goodwe.com/Ftp/EN/</u> Downloads/User%20Manual/GW_SolarGo_User%20Manual-EN.pdf.

Aplikacja SolarGo

Aplikacja SolarGo Instrukcja obsługi

8.4 Monitorowanie przez platformę SEMS Portal

Portal SEMS to platforma monitorująca wykorzystywana do zarządzania organizacjami/ użytkownikami, dodawania instalacji i monitorowania stanu instalacji. Więcej informacji można znaleźć w instrukcji użytkownika platformy SEMS Portal. Aby pobrać instrukcję obsługi, należy zeskanować kod QR lub odwiedzić stronę: <u>https://en.goodwe.com/Ftp/ EN/Downloads/User%20Manual/GW_SEMS%20Portal-User%20Manual-EN.pdf</u>.

Portal SEMS

Instrukcja użytkownika platformy SEMS Portal

9 Konserwacja

9.1 Wyłączanie zasilania falownika

🚹 NIEBEZPIECZEŃSTWO

- Przed przystąpieniem do serwisowania lub konserwacji należy wyłączyć zasilanie falownika.
 W przeciwnym razie może dojść do uszkodzenia falownika lub porażenia prądem.
- Opóźnione rozładowanie. Po wyłączeniu zasilania należy zaczekać, aż podzespoły zostaną rozładowane.

Krok 1 (opcja) Wysłać polecenie wyłączenia do falownika.

Krok 2 Wyłączyć wyłącznik prądu przemiennego między falownikiem a siecią elektryczną.

Krok 3 Wyłączyć wyłącznik prądu stałego falownika.

Krok 4 (opcja) Włączyć wyłącznik prądu stałego między falownikiem a stringiem fotowoltaicznym.

9.2 Demontaż falownika

🚹 OSTRZEŻENIE

- Wyłączyć falownik.
- Przed przystąpieniem do wykonywania jakichkolwiek czynności należy założyć odpowiednie środki ochrony indywidualnej.

Krok 1 Odłączyć wszystkie przewody, w tym przewody prądu stałego, przewody prądu przemiennego, przewody komunikacyjne, moduł komunikacyjny i przewody PE.

Krok 2 Zdemontować falownik z płyty montażowej.

Krok 3 Zdemontować płytę montażową.

Krok 4 Przechowywać falownik we właściwy sposób. Jeśli falownik ma być używany później, należy się upewnić, że warunki przechowywania spełniają wymagania.

9.3 Utylizacja falownika

Jeśli falownik nie może już pracować, należy go zutylizować zgodnie z lokalnymi przepisami dotyczącymi utylizacji odpadów urządzeń elektrycznych. Nie wolno wyrzucać go jako odpadu z gospodarstwa domowego.

9.4 Rozwiązywanie problemów

Rozwiązywanie problemów należy przeprowadzać zgodnie z poniższymi metodami. Jeżeli metody te nie przyniosą rezultatu, należy skontaktować się z działem obsługi posprzedażnej. Przed skontaktowaniem się z działem obsługi posprzedażnej należy zebrać poniższe informacje, co pozwoli szybko rozwiązać problemy:

- 1. Informacje o falowniku, takie jak numer seryjny, wersja oprogramowania, data instalacji, czas awarii, częstotliwość awarii itp.
- 2. Środowisko instalacji, w tym warunki pogodowe, czy moduły fotowoltaiczne są osłonięte lub zacienione itp. Zalecane jest dostarczenie kilku zdjęć i filmów, które pomogą w analizie problemu.
- 3. Sytuacja sieci elektrycznej.

Lp.	Błąd	Przyczyna	Rozwiązania	
1	Ver. Error	Nieprawidłowa wersja oprogramowania.	Skontaktuj się z działem obsługi posprzedażnej, aby zaktualizować oprogramowanie.	
2	Utility Loss	 Awaria zasilania sieciowego. Obwód prądu przemiennego lub wyłącznik prądu przemiennego jest wyłączony. 	 Sprawdzić, czy inne urządzenia elektryczne w tym samym punkcie przyłączenia do sieci działają normalnie i czy główne zasilanie jest normalne. Upewnić się, że przełączniki poprzedzające falownik są podłączone. Upewnić się, że kolejność faz przewodów prądu przemiennego jest podłączona prawidłowo, a przewód neutralny i przewód PE są prawidłowo i solidnie podłączone. 	
3	Vac Fail	Napięcie sieci elektrycznej przekracza dopuszczalny zakres.	 Upewnić się, że napięcie sieciowe mieści się w dopuszczalnym zakresie. Upewnić się, że kolejność faz przewodów prądu przemiennego jest podłączona prawidłowo, a przewód neutralny i przewód PE są prawidłowo i solidnie podłączone. 	
4	Fac Fail	Częstotliwość sieci elektrycznej przekracza dopuszczalny zakres.	 Sprawdzić, czy inne urządzenia elektryczne w tym samym punkcie przyłączenia do sieci działają normalnie i czy główne zasilanie jest normalne. Upewnić się, że częstotliwość sieciowa mieści się w dopuszczalnym zakresie. Upewnić się, że kolejność faz przewodów prądu przemiennego jest podłączona prawidłowo, a przewód neutralny i przewód PE są prawidłowo i solidnie podłączone. Zwróć uwagę na częstotliwość występowania usterek. Jeśli zdarza się to sporadycznie, to usterka może być spowodowana chwilową zmianą częstotliwości sieci elektroenergetycznej i nie wymaga naprawy. 	

Lp.	Błąd	Przyczyna	Rozwiązania	
5	Isolation Fail	 Układ fotowoltaiczny jest zwarty do uziemienia. Układ fotowoltaiczny znajduje się w wilgotnym otoczeniu, a obwód nie jest dobrze odizolowany od uziemienia. 	 Sprawdzić, czy przewody wejściowe układu fotowoltaicznego nie są uszkodzone. Sprawdzić, czy ramy modułu oraz metalowy wspornik są prawidłowo uziemione. Sprawdzić, czy strona prądu przemiennego jest prawidłowo uziemiona. Falowniki sprzedawane w Australii i Nowej Zelandii będą również alarmować w następujący sposób, gdy wystąpi awaria izolacji. Falowniki obsługują komunikację Wi-Fi: Wiadomość e-mail z informacją o usterce zostanie automatycznie wysłana do użytkownika. Falowniki nie obsługują komunikacji Wi-Fi: Brzęczyk w falowniku będzie emitował dźwięk przez 1 minutę. Jeśli problem nadal będzie się utrzymywał, dźwięk brzęczyka będzie emitowany co 30 minut. 	
6	DC inject High	Wielkość DC injection przekracza dozwolony zakres.	 Sprawdzić, czy wersja oprogramowania jest najnowsza. Uruchomić ponownie falownik, aby sprawdzić, czy falownik działa prawidłowo. 	
7	Ground I Fail	Impedancja wejściowa izolacji względem uziemienia zmniejsza się podczas pracy falownika.	 Sprawdzić, czy środowisko pracy falownika spełnia wymagania. Przykładowo może wystąpić usterka z powodu wysokiej wilgotności w deszczowe dni. Należy się upewnić, że elementy oraz strona prądu przemiennego są prawidłowo uziemione. 	
8	PV Over Voltage	Podłączono szeregowo nadmiarowe moduły fotowoltaiczne, a napięcie obwodu otwartego jest wyższe niż napięcie robocze.	 Sprawdzić, czy napięcie wejściowe stringu fotowoltaicznego jest zgodne z wartością wyświetlaną na wyświetlaczu LCD. Sprawdzić, czy napięcie stringu fotowoltaicznego spełnia wymagania dotyczące maksymalnego napięcia wejściowego. 	

Lp.	Błąd	Przyczyna	Rozwiązania
9	Over Temperature	 Falownik jest zainstalowany w miejscu o słabej wentylacji. Temperatura otoczenia jest zbyt wysoka. Falownik działa nieprawidłowo. 	 Sprawdzić środowisko instalacji i przestrzeń falownika. Upewnić się, że wentylacja spełnia wymagania dotyczące odprowadzania ciepła. Upewnić się, że wentylatory działają prawidłowo i nie są zakryte lub zablokowane. Sprawdzić, czy temperatura otoczenia podczas pracy nie jest zbyt wysoka.
10	AFan Fail	Wystąpił błąd na wszystkich wentylatorach falownika.	 Uruchomić ponownie falownik, aby sprawdzić, czy falownik działa prawidłowo. Upownić cio, żo wortylatory działają
11	EFan Fail	Wystąpił błąd zewnętrznego wentylatora falownika.	prawidłowo i nie są zakryte lub zablokowane.
12	IFan Fail	Wystąpił błąd wewnętrznego wentylatora falownika.	 Uruchomić ponownie falownik, aby sprawdzić, czy falownik działa prawidłowo. Wystąpił błąd wewnętrznego wentylatora, skontaktuj się z działem posprzedażnym.
13	ARC Fault	Przewody stringu fotowoltaicznego są nieprawidłowo połączone.	 Sprawdzić, czy przewody fotowoltaiczne są prawidłowo podłączone. Usunąć komunikaty o błędach. Należy skontaktować się z działem obsługi posprzedażowej, jeśli błąd pojawia się często.
14	DC Bus High		
15	SPI Fail		
16	Ref 1.5V Fail	Read wowpotrzny	1. Upewnij się, że wersja oprogramowania
17	AC HCT Fail	falownika.	2. Uruchom ponownie falownik, aby
18	GFCI Fail		sprawdzić, czy falownik działa prawidłowo.
19	Relay Check Fail		
20	EEPROM R/W Fail		

9.5 Rutynowa konserwacja

Zakres konserwacji Metoda konserwacji		Okres konserwacji
Czyszczenie systemu	Sprawdzić, czy na radiatorze oraz wlotach i wylotach powietrza nie ma ciał obcych ani kurzu.	Co 6–12 miesięcy
Wentylator	Sprawdzić wentylator pod kątem Prawidłowego stanu roboczego, niskiego poziomu hałasu i braku nieprawidłowości w wyglądzie.	
Wyłącznik prądu stałego	Dziesięć razy z rzędu włączyć i wyłączyć wyłącznik prądu stałego, aby się upewnić, że działa on prawidłowo.	Co rok
Połączenia elektryczne	Sprawdzić, czy przewody są solidnie podłączone. Sprawdzić, czy przewody nie są uszkodzone i czy nie ma odsłoniętej miedzianej żyły.	Co 6–12 miesięcy
Uszczelnienie	Sprawdzić, czy wszystkie zaciski i otwory są prawidłowo uszczelnione. Jeśli otwór na przewód nie jest uszczelniony lub jest zbyt duży, należy go ponownie uszczelnić.	Co rok
Test THDi	Zgodnie z wymogami obowiązującymi w Australii podczas testu THDi należy dodać Zref między falownikiem a siecią zasilania. Zref: Zmax lub Zref (prąd fazowy >16 A) Zref: L: 0,24 Ω + j0,15 Ω ; N: 0,16 Ω + j0,10 Ω (prąd fazowy >16 A, <21,7 A) Zref: L: 0,15 Ω + j0,15 Ω ; N: 0,1 Ω + j0,1 Ω (prąd fazowy >21,7 A, <75 A) Zref: \geq 5% Un/Irated+j5% Un/Irated (prąd fazowy >75 A)	Wedle potrzeby

10 Parametry techniczne

Dane techniczne	GW4K-DT	GW5K-DT	GW6K-DT	GW8K-DT	
Wejście					
Maks. moc wejściowa (W)	6000	7500	9000	12 000	
Maksymalne napięcie wejściowe (V)	1000	1000	1000	1000	
Zakres napięcia roboczego MPPT (V)	180~850	180~850	180~850	180~850	
Zakres napięcia MPPT przy mocy znamionowej (V)	410~800	410~800	410~800	410~800	
Napięcie rozruchowe (V)		1	60		
Znamionowe napięcie wejściowe (V)	620	620	620	620	
Maks. prąd wejściowy na MPPT (A)	12,5				
Maks. prąd zwarciowy na MPPT (A)	15,6				
Maks. prąd wsteczny do układu (A)	0	0	0	0	
Liczna trackerów MPP	2	2	2	2	
Liczba stringów na MPPT	1	1	1	1	
Wyjście					
Znamionowa moc wyjściowa (W)	4000	5000	6000	8000	
Znamionowa wyjściowa moc pozorna (VA)	4000	5000	6000	8000	
Maks. moc czynna AC (W)*1	4400	5500	6600	8800	
Maks. moc pozorna AC (VA)*2	4400	5500	6600	8800	
Moc znamionowa przy 40°C (W) (tylko Brazylia)	4000	5000	6000	8000	
Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	4000	5000	6000	8000	
Znamionowe napięcie wyjściowe (V)		400, 3	BL/N/PE		
Zakres napięcia wyjściowego (V)	180~2	70 (zgodnie z l	okalnym stand	ardem)	
Znamionowa częstotliwość sieci AC (Hz)	50 / 60	50 / 60	50 / 60	50/60	

Zakres częstotliwości sieci prądu przemiennego (Hz)		45-55	/ 55–65		
Maks. prąd wyjściowy (A)	6,4	8,0	9,6	12,8	
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)		2	22		
Początkowy prąd rozruchowy (szczyt i czas trwania) (A) (przy 50 μs)	10				
Znamionowy prąd wyjściowy (A)	5,8 7,2 8,7 11,6				
Współczynnik mocy wyjściowej	~1 (regulac	ja od wyprzedz	enia 0,8 do op	óźnienia 0,8)	
Maks. całkowite zniekształcenia harmoniczne		<	3%		
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	22,1	22,1	22,1	38,4	
Sprawność					
Maks. sprawność	98,2%	98,2%	98,2%	98,2%	
Sprawność wg norm europejskich	97,6%	97,6%	97,6%	97,6%	
Ochrona					
Wykrywanie rezystancji izolacji układu fotowoltaicznego		Wbuc	lowany		
Monitorowanie prądu szczątkowego		Wbuc	lowany		
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego		Wbuc	lowany		
Zabezpieczenie przed wyspowym trybem pracy		Wbuc	lowany		
Zabezpieczenie nadprądowe AC		Wbuc	lowany		
Zabezpieczenie przeciwzwarciowe AC		Wbuc	lowany		
Zabezpieczenie przed przepięciem AC		Wbuc	lowany		
Wyłącznik prądu stałego		Wbuc	lowany		
Zabezpieczenie przed udarem DC		Ту	p III		
Zabezpieczenie przed udarem AC		Ту	p III		
AFCI	Opcja				

Dane ogólne				
Zakres temperatury pracy (°C)	-30-+ 60 (60°C na zewnątrz, bez klimatyzacji, z oddziaływaniem słońca)			
Wilgotność względna	0-100%			
Maks. wysokość pracy n.p.m. (m)*3	≤4000			
Metoda chłodzenia	Konwekcja naturalna	Inteligentne chłodzenie wentylatorem		
Wyświetlacz	LCD, LED (opcjonalnie), WLAN+/	APP		
Komunikacja	RS485, Wi-Fi lub LAN (opcjonalr	nie)		
Protokół komunikacyjny	Modbus-RTU (zgodność z SunSp	pec)		
Masa (kg)	15	16		
Wymiary (SZER.×WYS.×GŁ., mm)	354 × 433 × 147	354 × 433 × 155		
Emisja hałasu (dB)	<34	<50		
Topologia	Nieizolowana			
Nocne zużycie mocy (W)	<1			
Stopień ochrony	IP65			
Klasa odporności na korozję	C4			
Złącze prądu stałego	MC4 (4-6 mm²)			
Złącze prądu przemiennego	Złącze typu "plug and play"			
Kategoria środowiskowa	4K4H			
Stopień zanieczyszczenia	III			
Kategoria przepięciowa	DC II / AC III			
Klasa ochrony	Ι			
Decisive Voltage Class (DVC)	PV: C AC: C Com: A			
Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF *4			
Kraj produkcji	Chiny			

Dane techniczne	GW10KT-DT	GW12KT-DT	GW15KT-DT	GW17KT-DT
Wejście				
Maks. moc wejściowa (W)	15 000	18 000	22 500	25 500
Maksymalne napięcie wejściowe (V)	1000	1000	1000	1100
Zakres napięcia roboczego MPPT (V)	180~850	180~850	180~850	200-950
Zakres napięcia MPPT przy mocy znamionowej (V)	410~800	500~850	500~850	470~860
Napięcie rozruchowe (V)	160	160	160	180
Znamionowe napięcie wejściowe (V)	620	620	620	620
Maks. prąd wejściowy na MPPT (A)	12,5	25/12,5	25/12,5	25
Maks. prąd zwarciowy na MPPT (A)	15,6	31,2/15,6	31,2/15,6	31,2
Maks. prąd wsteczny do układu (A)	0	0	0	0
Liczna trackerów MPP	2	2	2	2
Liczba stringów na MPPT	1	2/1	2/1	2
Wyjście				
Znamionowa moc wyjściowa (W)	10 000	12 000	15 000	17 000
Znamionowa wyjściowa moc pozorna (VA)	10 000	12 000	15 000	17 000
Maks. moc czynna AC (W) ^{*1}	11 000	13 200	16 500	18 700
Maks. moc pozorna AC (VA)*2	11 000	14 000	16 500	19 000
Moc znamionowa przy 40°C (W) (tylko Brazylia)	10 000	12 000	15 000	17 000
Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	10 000	12 000	15 000	17 000
Znamionowe napięcie wyjściowe (V)		400, 3	BL/N/PE	
Zakres napięcia wyjściowego (V)	180~2	70 (zgodnie z l	okalnym stand	lardem)
Znamionowa częstotliwość sieci AC (Hz)	50/60	50/60	50/60	50/60

Zakres częstotliwości sieci prądu przemiennego (Hz)	45–55 / 55–65	45–55 / 55–65	45–55 / 55–65	45–55 / 55–65
Maks. prąd wyjściowy (A)	16,0	20,3	24,0	28,8
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	38	61	61	71
Początkowy prąd rozruchowy (szczyt i czas trwania) (A) (przy 50 μs)	30	30	30	30
Znamionowy prąd wyjściowy (A)	14,5	17,3	21,7	24,5
Współczynnik mocy wyjściowej	~1 (regulac	ja od wyprzedz	zenia 0,8 do op	oóźnienia 0,8)
Maks. całkowite zniekształcenia harmoniczne		<	3%	
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	38,4	61,4	61,4	71,2
Sprawność				
Maks. sprawność	98,3%	98,3%	98,3%	98,4%
Sprawność wg norm europejskich	97,7%	97,7%	97,7%	97,7%
Ochrona				
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego		Wbuc	dowany	
Urządzenie do monitorowania prądu szczątkowego		Wbuc	lowany	
Zabezpieczenie przed wyspowym trybem pracy		Wbuc	lowany	
Zabezpieczenie nadprądowe AC		Wbuc	lowany	
Zabezpieczenie przeciwzwarciowe AC		Wbuc	lowany	
Zabezpieczenie przed przepięciem AC		Wbuc	lowany	
Wyłącznik prądu stałego		Wbuc	lowany	
Zabezpieczenie przed udarem DC		Typ III		Typ III (Typ II opcjonalnie)
Zabezpieczenie przed udarem AC	Тур III			
AFCI	Opcja			

Dane ogólne					
Zalvras tomporatium, practi (%C)	-30-6	0 (60°C na zewr	iątrz, bez klima	atyzacji,	
Zakres temperatury pracy (°C)	z oddziaływaniem słońca)				
Wilgotność względna	0-100%				
Maks. wysokość pracy n.p.m.	<1000				
(m)*3			000		
Metoda chłodzenia	Inte	eligentne chłod	zenie wentylat	orem	
Wyświetlacz	L	CD, LED (opcjon	alnie), WLAN+	APP	
Komunikacja	R	S485, Wi-Fi lub	LAN (opcjonal	nie)	
Protokół komunikacyjny	Μ	odbus-RTU (zgo	odność z SunS	pec)	
Masa (kg)	16	18	18	25	
Wymiany (SZER XWVS XCk mm)		251 × 122 × 155		415 × 511 ×	
Wymiary (SZEK.AWTS.AGE., Mill)	354 * 433 * 155 175				
Emisja hałasu (dB)			50		
Topologia		Nieizo	lowana		
Nocne zużycie mocy (W)	<1				
Stopień ochrony	IP65				
Klasa odporności na korozję		(24		
Złącze prądu stałego		MC4 (4	-6 mm²)		
Zlaczo pradu przemiepnogo	Zhaczo	turnu nlug and	play"	Złącze prądu	
ziącze prądu przemiennego	Ziącze	typu "piug anu	ріау	przemiennego	
Kategoria środowiskowa		4k	(4H		
Stopień zanieczyszczenia]	II		
Kategoria przepięciowa		DC II	/ AC III		
Klasa ochrony		Kla	isa I		
		P۱	/: C		
Decisive Voltage Class (DVC)	AC: C				
	Com: A				
Metoda aktywnej ochrony przed		AFDPF +	AODPF *4		
trybem wyspowym			<u> </u>		
Kraj produkcji		Ch	niny		

Dane techniczne	GW20KT-DT	GW25KT-DT			
Wejście	·				
Maks. moc wejściowa (W)	30 000	37 500			
Maksymalne napięcie wejściowe (V)	1100	1100			
Zakres napięcia roboczego MPPT (V)	200-950	200-950			
Zakres napięcia MPPT przy mocy znamionowej (V)	470~860	510-860			
Napięcie rozruchowe (V)	180	180			
Znamionowe napięcie wejściowe (V)	620	620			
Maks. prąd wejściowy na MPPT (A)	25	37,5/25			
Maks. prąd zwarciowy na MPPT (A)	31,2	46,8/31,2			
Maks. prąd wsteczny do układu (A)	0	0			
Liczna trackerów MPP	2	2			
Liczba stringów na MPPT	2	3/2			
Wyjście					
Znamionowa moc wyjściowa (W)	20 000	25 000			
Znamionowa wyjściowa moc pozorna (VA)	20 000	25 000			
Maks. moc czynna AC (W)*1	22 000	27 500			
Maks. moc pozorna AC (VA)*2	22 000	27 500			
Moc znamionowa przy 40°C (W) (tylko Brazylia)	20 000	25 000			
Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	20 000	25 000			
Znamionowe napięcie wyjściowe (V)	400, 3L/N/PE	400, 3L/N/PE			
Zakres napięcia wyjściowego (V)	180~270 (zgodnie z lo	okalnym standardem)			
Znamionowa częstotliwość sieci AC (Hz)	50/60	50/60			
Zakres częstotliwości sieci prądu przemiennego (Hz)	45-55 / 55-65	45-55 / 55-65			
Maks. prąd wyjściowy (A)	31,9	40,8			
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	71	87			
Początkowy prąd rozruchowy (szczyt i czas trwania) (Α) (przy 50 μs)	50	50			
Znamionowy prąd wyjściowy (A)	28,9	36,1			

Współczynnik mocy wyjściowej	~1 (regulacja od wyprzedzenia 0,8 do opóźnienia 0,8)				
Maks. całkowite zniekształcenia harmoniczne	<3%				
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	71,2 87				
Sprawność					
Maks. sprawność	98,4%	98,4%			
Sprawność wg norm europejskich	97,7%	97,7%			
Ochrona					
Wykrywanie rezystancji izolacji układu fotowoltaicznego	Wbude	owany			
Monitorowanie prądu szczątkowego	Wbude	owany			
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego	Wbudowany				
Zabezpieczenie przed wyspowym trybem pracy	Wbudowany				
Zabezpieczenie nadprądowe AC	Wbudowany				
Zabezpieczenie przeciwzwarciowe AC	Wbudowany				
Zabezpieczenie przed przepięciem AC	Wbudowany				
Wyłącznik prądu stałego	Wbudowany				
Zabezpieczenie przed udarem DC	Тур III (Тур II	opcjonalnie)			
Zabezpieczenie przed udarem AC	Тур) III			
AFCI	Ор	cja			
Dane ogólne					
Zakres temperatury pracy (°C)	-30-60 (60°C na zewn z oddziaływa	ątrz, bez klimatyzacji, niem słońca)			
Wilgotność względna	0-10	00%			
Maks. wysokość pracy n.p.m. (m)*3	≤ 4(000			
Metoda chłodzenia	Inteligentne chłodz	enie wentylatorem			
Wyświetlacz	LCD, LED (opcjona	alnie), WLAN+APP			
Komunikacja	RS485, Wi-Fi lub l	AN (opcjonalnie)			
Protokół komunikacyjny	Modbus-RTU (zgo	dność z SunSpec)			
Masa (kg)	2	5			
Wymiary (SZER.×WYS.×GŁ., mm)	415×51	1×175			
Emisja hałasu (dB)	5	0			
Тороlogia	Nieizolowana				

Nocne zużycie mocy (W)	<1
Stopień ochrony	IP65
Klasa odporności na korozję	C4
Złącze prądu stałego	MC4 (4-6 mm²)
Złącze prądu przemiennego	Złącze prądu przemiennego
Kategoria środowiskowa	4K4H
Stopień zanieczyszczenia	III
Kategoria przepięciowa	DC II / AC III
Klasa ochrony	Klasa I
Decisive Voltage Class (DVC)	PV: C AC: C Com: A
Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF *4
Kraj produkcji	Chiny

*1: Dla Belgii i Brazylii maks. moc czynna AC (W): Dla GW4K-DT to 4000, GW5K-DT to 5000, GW6K-DT to 6000, GW8K-DT to 8000, GW10KT-DT to 10000, GW12KT-DT to 12000, GW15KT-DT to 15000, GW17KT-DT to 17000, GW20KT-DT to 20000, GW25KT-DT to 25000, GW4000-SDT-20 to 4000, GW5000-SDT-20 to 5000, GW6000-SDT-20 to 6000, GW8000-SDT-20 to 8000, GW10K-SDT-20 to 10000, GW12K-SDT-20 to 12000, GW12KLV-SDT-20 to 12000, GW15K-SDT-20 to 15000, GW17K-SDT-20 to 17000, GW20K-SDT-20 to 20000.

*2: Dla Belgii Maks. wyjściowa moc pozorna (VA): Dla GW4K-DT to 4000, GW5K-DT to 5000, GW6K-DT to 6000, GW8K-DT to 8000, GW10KT-DT to 10000, GW12KT-DT to 12000, GW15KT-DT to 15000, GW17KT-DT to 17000, GW20KT-DT to 20000, GW25KT-DT to 25000, GW4000-SDT-20 to 4000, GW5000-SDT-20 to 5000, GW6000-SDT-20 to 6000, GW8000-SDT-20 to 8000, GW10K-SDT-20 to 10000, GW12K-SDT-20 to 12000, GW12KLV-SDT-20 to 12000, GW15K-SDT-20 to 15000, GW17K-SDT-20 to 17000, GW20K-SDT-20 to 20000.

*3: Dla Australii maks. wysokość n.p.m. (m) wynosi 3000.

*4: AFDPF: Aktywny dryf częstotliwości z dodatnim sprzężeniem zwrotnym, AQDPF: Aktywny dryf Q z dodatnim sprzężeniem zwrotnym.

Dane techniczne	GW8KAU-	GW9.9KAU-	GW10KAU-	GW15KAU-	GW20KAU-
Weiście	וש	וש	וש	וש	וש
Maks, moc weiściowa (W)	12 000	15 000	15 000	22 500	30,000
Maks. napięcie wejściowe (V)	1100	1100	1100	1100	1100
Zakres napięcia roboczego MPPT (V)	140~950	140~950	140~950	140~950	140~950
Zakres napięcia MPPT przy mocy znamionowej (V)	180~850	180~850	180~850	270~850	360~850
Napięcie rozruchowe (V)	180	180	180	180	180
Znamionowe napięcie wejściowe (V)	620	620	620	620	620
Maks. prąd wejściowy na MPPT (A)	30	30	30	30	30
Maks. prąd zwarciowy na MPPT (A)	37,5	37,5	37,5	37,5	37,5
Maks. prąd wsteczny do układu (A)	0	0	0	0	0
Liczba MPPT	2	2	2	2	2
Liczba stringów na MPPT	2	2	2	2	2
Wyjście					
Znamionowa moc wyjściowa (W)	8000	9900	10 000	15 000	20 000
Znamionowa wyjściowa moc pozorna (VA)	8000	9900	10 000	15 000	20 000
Maks. moc aktywna AC (W)	8800	9900	11 000	16 500	22 000
Maks. moc pozorna AC (VA)	8800	9900	11 000	16 500	22 000
Znamionowe napięcie wyjściowe (V)	400, 3L/N/ PE				
Zakres napięcia wyjściowego (V) (Zgodnie z lokalnym standardem)			180~260		

Znamionowa częstotliwość sieci AC (Hz)	50	50	50	50	50
Zakres częstotliwości sieci prądu przemiennego (Hz)	47~52	47~52	47~52	47~52	47~52
Maks. prąd wyjściowy (A)	12,8	14,4	16	24	31,9
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	118	118	118	118	118
Początkowy prąd rozruchowy (szczyt i czas trwania) (A) (przy 50 μs)	65	65	65	65	65
Znamionowy prąd wyjściowy (A)	11,6	14,4	14,5	21,7	28,9
Współczynnik mocy	~1 (regulacja od wyprzedzenia 0,8 do opóźnienia 0,8)				
Maks. całkowite zniekształcenia harmoniczne	<3%				
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	38,4	38,4	38,4	88,9	88,9
Sprawność					
Maks. sprawność	98,4%	98,4%	98,4%	98,4%	98,4%
Sprawność wg norm europejskich	97,5%	97,5%	97,5%	97,5%	97,5%
Ochrona					
Wykrywanie rezystancji izolacji układu fotowoltaicznego	Wbudowany				
Monitorowanie prądu szczątkowego	Wbudowany				
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego	Wbudowany				
Zabezpieczenie przed wyspowym trybem pracy	Wbudowany				

Zabezpieczenie nadprądowe AC	Wbudowany				
Zabezpieczenie przeciwzwarciowe AC	Wbudowany				
Zabezpieczenie przed przepięciem AC			Wbudowany		
Wyłącznik prądu stałego			Wbudowany		
Zabezpieczenie przed udarem DC			Тур II		
Zabezpieczenie przed udarem AC			Typ III		
AFCI			Opcja		
Awaryjne wyłączenie zasilania			Opcja		
Zdalne wyłączenie			Opcja		
Dane ogólne					
Zakres temperatury pracy (°C)	-30-+ 60 (60°C na zewnątrz, bez klimatyzacji, z oddziaływaniem słońca)				
Wilgotność względna	0–100%				
Maks. wysokość pracy n.p.m. (m)	3000				
Metoda chłodzenia	Konwekcja naturalna wentylatorem			e chłodzenie atorem	
Interfejs użytkownika		LCD, LED (opcjonalnie), V	VLAN+APP	
Komunikacja		RS485, Wi	-Fi lub LAN (op	ocjonalnie)	
Protokoły komunikacyjne		Modbus-R	TU (zgodność :	z SunSpec)	
Masa (kg)	20,5		20,5	26,0	26,0
Wymiary (szer.×wys.×gł., mm)		4	15 × 511 × 17	5	
Emisja hałasu (dB)	<25 <50				
Topologia			Nieizolowana		
Zużycie własne w nocy (W)			<1		
Stopień ochrony			IP65		
Klasa odporności na korozję			C4		
Złącze prądu stałego	MC4 (4~6 mm²)				

65

Złącze prądu przemiennego	Złącze prądu przemiennego		
Kategoria środowiskowa	4K4H		
Stopień zanieczyszczenia	III		
Kategoria przepięciowa	DC II / AC III		
Klasa ochrony	Klasa I		
Decisive Voltage Class (DVC)	PV: C AC: C Com: A		
Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF *1		
Kraj produkcji	Chiny		

*1: AFDPF: Aktywny dryf częstotliwości z dodatnim sprzężeniem zwrotnym, AQDPF: Aktywny dryf Q z dodatnim sprzężeniem zwrotnym.

Dane techniczne	GW8000- SDT-20	GW10K- SDT-20	GW12K- SDT-20	GW12KLV-SDT-20				
Wejście								
Maks. moc wejściowa (W)	16 000	20 000	24 000	19 200				
Maksymalne napięcie wejściowe (V)	1100	1100	1100	800				
Zakres napięcia roboczego MPPT (V)	140~950	140~950	140~950	140-650				
Zakres napięcia MPPT przy mocy znamionowej (V)	290~850	360~850	220~850	360-650				
Napięcie rozruchowe (V)	180	180	180	180				
Znamionowe napięcie wejściowe (V)	620	620	620	370				
Maks. prąd wejściowy na MPPT (A)	15	15	30	30				

Maks. prąd zwarciowy na MPPT (A)	18,7	18,7	37,5	37,5
Maks. prąd wsteczny do układu (A)	0	0	0	0
Liczna trackerów MPP	2	2	2	2
Liczba stringów na MPPT	1	1	2	2
Wyjście				
Znamionowa moc wyjściowa (W)	8000	10 000	12 000	12 000
Znamionowa wyjściowa moc pozorna (VA)	8000	10 000	12 000	12 000
Maks. moc czynna AC (W)*1	8800	11 000	13 200	12 000
Maks. moc pozorna AC (VA)*1	8800	11 000	13 200	12 000
Moc znamionowa przy 40°C (W) (tylko Brazylia)	8000	10 000	12 000	12 000
Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	8800	11 000	13 200	12 000
Znamionowe napięcie wyjściowe (V)	380/400/415, 3/N/PE			220/127, 3L/N/PE
Zakres napięcia wyjściowego (V) (Zgodnie z lokalnym standardem)	180~270			170-240
Znamionowa częstotliwość sieci AC (Hz)	50/60	50/60	50/60	60
Zakres częstotliwości sieci prądu przemiennego (Hz)	45–55 / 55–65	45–55 / 55–65	45–55 / 55–65	57,5~62
Maks. prąd wyjściowy (A)	12,8	16,0	19,1	31,9
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	38	38	89	89
Początkowy prąd rozruchowy (szczyt i czas trwania) (A) (przy 50 μs)	30	30	30	50
Znamionowy prąd wyjściowy (A)	11,6	14,5	17,4	28,9
Współczynnik mocy wyjściowej	~1 (regul	acja od wyprz	edzenia 0,8 c	lo opóźnienia 0,8)
Maks. całkowite zniekształcenia harmoniczne	<3%			
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	38,4	38,4	88,9	88,9

Sprawność								
Maks. sprawność	98,3%	98,3%	98,4%	96,9%				
Sprawność wg norm europejskich	97,6%	97,6%	97,8%	96,4%				
Ochrona								
Wykrywanie rezystancji izolacji układu fotowoltaicznego	Wbudowany							
Monitorowanie prądu szczątkowego	Wbudowany							
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego	Wbudowany							
Zabezpieczenie przed wyspowym trybem pracy	Wbudowany							
Zabezpieczenie nadprądowe AC	Wbudowany							
Zabezpieczenie przeciwzwarciowe AC	Wbudowany							
Zabezpieczenie przed przepięciem AC	Wbudowany							
Wyłącznik prądu stałego	Wbudowany							
Zabezpieczenie przed udarem DC	Тур II							
Zabezpieczenie przed udarem AC	Тур II							
AFCI	Орсја							
Awaryjne wyłączenie zasilania	Opcja							
Zdalne wyłączenie	Орсја							
Dane ogólne								
Zakres temperatury pracy (°C)	-30-+ 60 (60°C na zewnątrz, bez klimatyzacji, z oddziaływaniem słońca)							
Wilgotność względna	0–100%							
Maks. wysokość n.p.m. (m)*2	4000							
Metoda chłodzenia	Konwekcja naturalna		Inteligentne chłodzenie wentylatorem					
Wyświetlacz	LED, LCD (opcja, WLAN+APP)							
Komunikacja	RS485, Wi-Fi lub 4G (opcjonalnie)			onalnie)				
Masa (kg)	20,5	20,5	23,5	26				
Wymiary (SZER.×WYS.×GŁ., mm)	415 × 511 × 175		415 × 511 × 198					
Emisja hałasu (dB)	<25 <50		<50					
Topologia	Nieizolowana							
Nocne zużycie mocy (W)	<1							
--	--------------------------							
Stopień ochrony	IP65							
Klasa odporności na korozję	C4							
Złącze prądu stałego	MC4 (4~6 mm²)							
Złącze prądu przemiennego	Zacisk OT							
Kategoria środowiskowa	4K4H							
Stopień zanieczyszczenia	III							
Kategoria przepięciowa	DC II / AC III							
Klasa ochrony	Ι							
Decisive Voltage Class (DVC)	PV: C AC: C Com: A							
Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF*3							
Kraj produkcji	Chiny							

Dane techniczne	GW15K-SDT-20	GW17K-SDT-20	GW20K-SDT-20
Wejście			
Maks. moc wejściowa (W)	30 000	34 000	40 000
Maksymalne napięcie wejściowe (V)	1100	1100	1100
Zakres napięcia roboczego MPPT (V)	140~950	140~950	140~950
Zakres napięcia MPPT przy mocy znamionowej (V)	275~850	300~850	360~850
Napięcie rozruchowe (V)	180	180	180
Znamionowe napięcie wejściowe (V)	620	620	620
Maks. prąd wejściowy na MPPT (A)	30	30	30
Maks. prąd zwarciowy na MPPT (A)	37,5	37,5	37,5
Maks. prąd wsteczny do układu (A)	0	0	0
Liczna trackerów MPP	2	2	2

69

Liczba stringów na MPPT	2	2	2
Wyjście			
Znamionowa moc wyjściowa (W)	15 000	17 000	20 000
Znamionowa wyjściowa moc pozorna (VA)	15 000	17 000	20 000
Maks. moc czynna AC (W)*1	16 500	18 700	22 000
Maks. moc pozorna AC (VA) *1	16 500	18 700	22 000
Moc znamionowa przy 40°C (W) (tylko Brazylia)	15 000	17 000	20 000
Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	16 500	18 700	22 000
Znamionowe napięcie wyjściowe (V)	380/400/415, 3/N/PE		
Zakres napięcia wyjściowego (V) (Zgodnie z lokalnym standardem)	180~270		
Znamionowa częstotliwość sieci AC (Hz)	50/60	50/60	50/60
Zakres częstotliwości sieci prądu przemiennego (Hz)	45–55 / 55–65	45–55 / 55–65	45-55 / 55-65
Maks. prąd wyjściowy (A)	24,0	27,1	32,0
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	89	89	89
Początkowy prąd rozruchowy (szczyt i czas trwania) (A) (przy 50 μs)	50	50	50
Znamionowy prąd wyjściowy (A)	21,7	24,6	29,0
Współczynnik mocy wyjściowej	~1 (regulacja od wyprzedzenia 0,8 do opóźnienia 0,8)		o opóźnienia 0,8)
Maks. całkowite zniekształcenia harmoniczne	<3%		
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	88,9		
Sprawność			
Maks. sprawność	98,4%	98,4%	98,4%
Sprawność wg norm europejskich	97,8%	97,8%	97,8%
Ochrona			
Wykrywanie rezystancji izolacji układu fotowoltaicznego	Wbudowany		
Monitorowanie prądu szczątkowego	Wbudowany		

Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego	Wbudowany		
Zabezpieczenie przed wyspowym trybem pracy	Wbudowany		
Zabezpieczenie nadprądowe AC	Wbudowany		
Zabezpieczenie przeciwzwarciowe AC	Wbudowany		
Zabezpieczenie przed przepięciem AC	Wbudowany		
Wyłącznik prądu stałego	Wbudowany		
Zabezpieczenie przed udarem DC	Тур II		
Zabezpieczenie przed udarem AC	Тур II		
AFCI	Opcja		
Awaryjne wyłączenie zasilania	Opcja		
Zdalne wyłączenie	Opcja		
Dane ogólne			
Zakres temperatury pracy (°C)	-30-+ 60 (60°C na zewnątrz, bez klimatyzacji, z oddziaływaniem słońca)		
Wilgotność względna	0–100%		
Maks. wysokość n.p.m. (m) ^{*2}	4000		
Metoda chłodzenia	Inteligentne chłodzenie wentylatorem		
Wyświetlacz	LED, LCD (opcja, WLAN+APP)		
Komunikacja	RS485, Wi-Fi lub 4G (opcjonalnie)		
Masa (kg)	26		
Wymiary (SZER.×WYS.×GŁ., mm)	415 × 511 × 198		
Emisja hałasu (dB)	<50		
Topologia	Nieizolowana		
Nocne zużycie mocy (W)	<1		
Stopień ochrony	IP65		
Klasa odporności na korozję	C4		
Złącze prądu stałego	MC4 (4~6 mm²)		
Złącze prądu przemiennego	Zacisk OT		
Kategoria środowiskowa	4K4H		
Stopień zanieczyszczenia	III		
Kategoria przepięciowa	DC II / AC III		
Klasa ochrony	I		
Decisive Voltage Class (DVC)	PV: C AC: C Com: A		

Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF*3
Kraj produkcji	Chiny

*1. Dla Chile maks. moc czynna AC (W) i maks. wyjściowa moc pozorna (VA): Dla GW4000-SDT-20 to 4000, GW5000-SDT-20 to 5000, GW6000-SDT-20 to 6000, GW8000-SDT-20 to 8000, GW10K-SDT-20 to 10000, GW12K-SDT-20 to 12000, GW12KLV-SDT-20 to 12000, GW15K-SDT-20 to 15000, GW17K-SDT-20 to 17000, GW20K-SDT-20 to 20000.

*2. Dla Australii maks. wysokość n.p.m. (m) wynosi 3000.

*3. AFDPF: Aktywny dryf częstotliwości z dodatnim sprzężeniem zwrotnym, AQDPF: Aktywny dryf Q z dodatnim sprzężeniem zwrotnym.

Dane techniczne	GW4000-SDT-20	GW5000-SDT-20	GW6000-SDT-20
Wejście			
Maks. moc wejściowa (W)	6000	7500	9000
Maksymalne napięcie wejściowe (V)	1000	1000	1000
Zakres napięcia roboczego MPPT (V)	180~850	180~850	180~850
Zakres napięcia MPPT przy mocy znamionowej (V)	410~800	410~800	410~800
Napięcie rozruchowe (V)	180		
Znamionowe napięcie wejściowe (V)	620	620	620
Maks. prąd wejściowy na MPPT (A)	16		
Maks. prąd zwarciowy na MPPT (A)	20		
Maks. prąd wsteczny do układu (A)	0	0	0
Liczna trackerów MPP	2	2	2
Liczba stringów na MPPT	1	1	1
Wyjście			
Znamionowa moc wyjściowa (W)	4000	5000	6000
Znamionowa wyjściowa moc pozorna (VA)	4000	5000	6000
Maks. moc czynna AC (W)*1	4400	5500	6600
Maks. moc pozorna AC (VA)*1	4400	5500	6600
Moc znamionowa przy 40°C (W) (tylko Brazylia)	4000	5000	6000

Moc maks. przy 40°C (w tym przeciążenie AC) (W) (tylko Brazylia)	4400	5500	6600
Znamionowe napięcie wyjściowe (V)	400, 3L/N/PE		
Zakres napięcia wyjściowego (V)	180~270		
Znamionowa częstotliwość sieci AC (Hz)	50 / 60	50 / 60	50 / 60
Zakres częstotliwości sieci prądu przemiennego (Hz)	45-55 / 55-65		
Maks. prąd wyjściowy (A)	6,4	8,0	9,6
Maks. wyjściowy prąd zwarciowy (szczyt i czas trwania) (A) (przy 5 ms)	22	22	22
Początkowy prąd rozruchowy (szczyt i czas trwania) (Α) (przy 50 μs)	10	10	10
Znamionowy prąd wyjściowy (A)	5,8	7,2	8,7
Współczynnik mocy wyjściowej	~1 (regulacja od wyprzedzenia 0,8 do opóźnienia 0,8)		
Maks. całkowite zniekształcenia harmoniczne	<3%		
Maksymalne zabezpieczenie nadprądowe wyjścia (A)	22	22	22
Sprawność			
Maks. sprawność	98,2%	98,2%	98,2%
Sprawność wg norm europejskich	97,6%	97,6%	97,6%
Ochrona			
Wykrywanie rezystancji izolacji układu fotowoltaicznego	Wbudowany		
Monitorowanie prądu szczątkowego	Wbudowany		
Zabezpieczenie przed odwrotną polaryzacją układu fotowoltaicznego	Wbudowany		
Zabezpieczenie przed wyspowym trybem pracy	Wbudowany		
Zabezpieczenie nadprądowe AC	Wbudowany		
Zabezpieczenie przeciwzwarciowe AC	Wbudowany		
Zabezpieczenie przed przepięciem AC	Wbudowany		
Wyłącznik prądu stałego	Wbudowany		
Zabezpieczenie przed udarem DC	Typ III (Typ II opcjonalnie)		

Zabezpieczenie przed udarem AC	Тур III	
AFCI	Орсја	
Awaryjne wyłączenie zasilania	Орсја	
Zdalne wyłączenie	Opcja	
Dane ogólne		
Zakres temperatury pracy (°C)	-30-+ 60 (60°C na zewnątrz, bez klimatyzacji, z oddziaływaniem słońca)	
Wilgotność względna	0–100%	
Maks. wysokość n.p.m. (m)*2	4000	
Metoda chłodzenia	Konwekcja naturalna	
Wyświetlacz	LED, LCD (opcja, WLAN+APP)	
Komunikacja	RS485, Wi-Fi lub 4G (opcjonalnie)	
Masa (kg)	15	
Wymiary (SZER.×WYS.×GŁ., mm)	354 × 433 × 147	
Emisja hałasu (dB)	<34	
Тороlogia	Nieizolowana	
Nocne zużycie mocy (W)	<1	
Stopień ochrony	IP65	
Klasa odporności na korozję	C4	
Złącze prądu stałego	MC4 (4~6 mm²)	
Złącze prądu przemiennego	Złącze typu "plug and play"	
Kategoria środowiskowa	4K4H	
Stopień zanieczyszczenia	III	
Kategoria przepięciowa	DC II / AC III	
Klasa ochrony	Klasa I	
Decisive Voltage Class (DVC)	PV: C AC: C Com: A	
Metoda aktywnej ochrony przed trybem wyspowym	AFDPF + AQDPF*3	
Kraj produkcji	Chiny	

*1. Dla Chile maks. moc czynna AC (W) i maks. wyjściowa moc pozorna (VA): Dla GW4000-SDT-20 to 4000, GW5000-SDT-20 to 5000, GW6000-SDT-20 to 6000, GW8000-SDT-20 to 8000, GW10K-SDT-20 to 10000, GW12K-SDT-20 to 12000, GW12KLV-SDT-20 to 12000, GW15K-SDT-20 to 15000, GW17K-SDT-20 to 17000, GW20K-SDT-20 to 20000.

*2. Dla Australii maks. wysokość n.p.m. (m) wynosi 3000.

*3. AFDPF: Aktywny dryf częstotliwości z dodatnim sprzężeniem zwrotnym, AQDPF: Aktywny dryf Q z dodatnim sprzężeniem zwrotnym.

Witryna internetowa GoodWe

GoodWe Technologies Co., Ltd.

🖉 No. 90 Zijin Rd., New District, Suzhou, 215011, Chiny

www.goodwe.com

🖂 service@goodwe.com

Kontakty lokalne